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Breast cancer is the most commonly diagnosed cancer in women. Metastasis is the
primary cause of mortality for breast cancer patients. Multiple mechanisms underlie breast
cancer metastatic dissemination, including the interleukin-6 (IL-6)-mediated signaling
pathway. IL-6 is a pleiotropic cytokine that plays an important role in multiple
physiological processes including cell proliferation, immune surveillance, acute
inflammation, metabolism, and bone remodeling. IL-6 binds to the IL-6 receptor (IL-
6Ra) which subsequently binds to the glycoprotein 130 (gp130) receptor creating a signal
transducing hexameric receptor complex. Janus kinases (JAKs) are recruited and
activated; activated JAKs, in turn, phosphorylate signal transducer and activator of
transcription 3 (STAT3) for activation, leading to gene regulation. Constitutively active
IL-6/JAK/STAT3 signaling drives cancer cell proliferation and invasiveness while
suppressing apoptosis, and STAT3 enhances IL-6 signaling to promote a vicious
inflammatory loop. Aberrant expression of IL-6 occurs in multiple cancer types and is
associated with poor clinical prognosis and metastasis. In breast cancer, the IL-6 pathway
is frequently activated, which can promote breast cancer metastasis while simultaneously
suppressing the anti-tumor immune response. Given these important roles in human
cancers, multiple components of the IL-6 pathway are promising targets for cancer
therapeutics and are currently being evaluated preclinically and clinically for breast cancer.
This review covers the current biological understanding of the IL-6 signaling pathway and
its impact on breast cancer metastasis, as well as, therapeutic interventions that target
components of the IL-6 pathway including: IL-6, IL-6Ra, gp130 receptor, JAKs,
and STAT3.
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INTRODUCTION

Breast cancer affects 1 in 8 women in the United States and is the second leading cause of cancer-
related deaths in women behind lung cancer (1). Breast cancers are diverse and often identified by
molecular subtype via immunohistochemical (IHC) expression of prognostic markers: estrogen
receptor (ER), progesterone receptor (PR), and the human epidermal growth factor receptor
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2 (HER2). The molecular subtypes of breast cancer range in both
receptor expression and prognoses: luminal A (ER and/or PR+
/HER2-), luminal B (ER and/or PR+/HER+), HER2-enriched
(ER-/PR-/HER2+), and triple negative (ER-/PR-/HER2-) (2).
HER2-enriched breast cancer and triple-negative breast cancer
(TNBC) are the most aggressive subtypes represented by a higher
Ki67 staining, poorer patient survival, and the highest propensity
to metastasize (3). Primary breast cancer patients have a 5-year
survival rate of 99%; however, the development of metastases
diminishes survival rates to 28% (1). 20-30% of breast cancer
cases metastasize to distant organs, which accounts for 90% of
breast cancer-related deaths (4). The most common sites of
metastasis for breast cancer patients include the bone, lung,
brain, and liver (5). The development of metastases is a complex
process comprised of multiple steps including epithelial-
mesenchymal transition (EMT), local invasion, migration,
intravasation, extravasation, mesenchymal-epithelial transition,
and colonization to a distant organ. During many of these steps,
breast cancer cells secrete small soluble proteins, such as
cytokines, to promote cancer cells (autocrine effect) and prime
microenvironmental cells (paracrine effect) (6). Cytokines are
secreted, pleiotropic proteins (15-20 kDa) that mediate a myriad
of immunological and inflammatory responses that are often
hijacked in cancer. Many cytokines can exhibit either pro- or
anti-cancer properties, including interleukin-6 (IL-6). Under
homeostatic conditions, IL-6 plays fundamental roles in
immune response, inflammation, hematopoiesis, and bone
homeostasis; however, dysregulation of IL-6 promotes the
pathogenesis of multiple inflammatory and immune-mediated
diseases, as well as, cancer (7, 8). The IL-6 signaling pathway is
one of the most dysregulated pathways in cancer. For example,
IL-6 is elevated in sera of ovarian, cervical, colorectal, esophageal,
head-and-neck, pancreatic, prostate, liver, lung, gastric, and
breast cancer patients (9–24). In breast cancer, IL-6 expression
correlates with poor patient survival, promotes growth and
invasion, and mediates metastatic progression, which identifies
the IL-6 signaling axis as a potential therapeutic target (25, 26).
Consequently, many IL-6-pathway-targeted therapies have been
developed and evaluated for breast cancer. Herein, we
summarize the biology of the IL-6 signaling pathway, its roles
in breast cancer metastasis, and therapeutic advancements in
targeting the IL-6/JAK/STAT3 signaling axis.
IL-6 SIGNALING

IL-6 was first identified as a 26 kDa T cell-secreted factor that
stimulates B cells for antibody production. Since the cloning of
IL-6 cDNA by the Hirano and Kishimoto group in 1986 (27, 28),
it became evident that IL-6 function was not limited to the
immune system as the cDNA sequence maintained homology to
other identified proteins: B cell stimulatory factor-2, Hepatocyte-
stimulating factor, Hybridoma plasmacytoma growth factor, and
interferon b2 (28–32). IL-6 is a member of the IL-6 cytokine
family, a four-a helical bundle cytokine, and is secreted by both
immune and non-immune cells. The IL-6 cytokine family
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encompasses eight cytokines, namely, IL-6, IL-11, ciliary
neurotrophic factor (CNTF), leukemia inhibitory factor (LIF),
oncostatin M (OSM), cardiotrophin 1 (CT-1), cardiotrophin-like
cytokine (CLC), and IL-27. These cytokines bind to their
respective receptors, but all utilize the signal-transducing co-
receptor, glycoprotein 130 (gp130, CD130, IL-6Rb, IL6ST, 130
kDa). More recently, two additional cytokines were added to the
IL-6 cytokine family, IL-35 and IL-39, which utilize gp130 for
signal transduction (33, 34). Specifically, IL-6 requires both
interleukin-6 receptor a (IL-6Ra, CD80, 80 kDa) and gp130 to
activate the downstream pathways via classic signaling, trans-
signaling, or trans-presentation (35–37).

Classic Signaling
Classic IL-6 signaling is mediated strictly through membrane-
bound receptors, IL-6Ra and gp130 (Figure 1, left) (38). IL-6
first binds to IL-6Ra on the cell surface which creates a high
affinity for transmembrane gp130. Two trimeric receptor
complexes (IL-6/IL-6Ra/gp130) homodimerize; IL-6 of one
trimeric complex binds to the D1 domain of gp130 of the
second trimeric complex, forming a signal transducing
hexameric receptor complex (39). The IL-6/IL-6Ra/gp130
receptor complex activates mitogen activated protein kinase
(MAPK), phosphatidylinositide-3-kinase (PI3K), Janus kinases
(JAKs), and signal transducer and activator of transcription
(STATs) signaling cascades. Formation of the IL-6/IL-6Ra/
gp130 hexameric complex recruits the JAK family of non-
receptor tyrosine kinases (JAK1, JAK2, and TYK2) to the
membrane which associate with and phosphorylate the
cytoplasmic tail of gp130 at five tyrosine residues (Y759, Y767,
Y814, Y905, and Y915) (40). Phosphorylated gp130 serves as a
docking site for STAT1 and STAT3 transcription factors that are
subsequently phosphorylated by JAKs at Y701 and Y705,
respectively (41, 42). Notably, IL-6 activates STAT3 more
potently when compared to STAT1 (43). Upon phosphorylation,
STAT3 undergoes a conformational change, detaches from the
receptor complex, and homodimerizes allowing for STAT3
translocation into the nucleus to promote transcriptional
activation (44). STAT3 is negatively regulated by tyrosine
phosphatases, disruption of JAKs and/or cytokine receptors by
suppressors of cytokine signaling (SOCS), or direct protein
inhibitors of activated STATs (PIAS) (45–47). Receptor
availability can also become a limiting factor for IL-6 signaling
since IL-6 must be complexed with IL-6Ra in order to bind to
gp130 receptor for signal transduction (38). Interestingly,
transmembrane gp130 expression is ubiquitously expressed on
most cell types; however, expression of membrane-bound IL-6Ra
is restricted, therefore, limiting classic signaling to a small subset of
cells (48, 49). Since IL-6 modulates pleiotropic effects beyond
immune cells, it quickly became evident that IL-6 signals via
alternative mechanisms outside of membrane-bound receptors,
termed trans-signaling.

Trans-Signaling
IL-6 trans-signaling is mediated through a soluble form of IL-6Ra
(sIL-6Ra) to potentiate IL-6 signaling in cells lacking sufficient
expression of membrane-bound IL-6Ra (Figure 1, middle) (38, 50).
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Originally detected in serum and urine samples, sIL-6Ra functions
as an agonist for IL-6 signaling. sIL-6Ra is produced either by
proteolytic cleavage of the membrane-bound IL-6Ra or alternative
splicing of pre-mRNA (50–54). Membrane-bound IL-6Ra
undergoes proteolysis, or shedding, by disintegrin and
metalloproteinase domain-containing proteins ADAM10 or
ADAM17 to form sIL-6Ra (50, 55–57). Secreted IL-6 binds to
sIL-6Ra which binds transmembrane gp130. Subsequently, two
trimeric receptor complexes homodimerize to activate downstream
signaling. Interestingly, gp130 can also present in a soluble form
(sgp130) and sequesters IL-6/sIL6Ra, thus antagonizing IL-6 trans-
signaling without impacting IL-6 classic signaling. However, sgp130
levels are almost negligible when compared to sIL-6Ra (52, 58).
Trans-signaling regulates the IL-6 immune response and mediates
pro-inflammatory responses through recruitment of mononuclear
cells, stimulation of endothelial cells, T-cell survival, and inhibition
of regulatory T-cell differentiation (59, 60). Administration of IL-6
and sIL-6Ra activates STAT3 in endothelial cells, solely expressing
membrane-bound gp130, to recruit leukocytes for local
inflammation in vitro and in vivo (61). Since trans-signaling
mediates the pro-inflammatory responses induced by IL-6, trans-
signaling is referred to as the primary mechanism by which IL-6
signaling promotes tumorigenesis in multiple cancers (59, 62, 63).
In cancer, IL-6 trans-signaling induces therapeutic resistance,
angiogenesis, and is associated with poor clinical outcome (64).

Cluster Signaling
More recently, a third mechanism of IL-6 signaling has been
reported where IL-6 signals between two interacting cells termed,
trans-presentation or “cluster signaling” (37). Originally
discovered in 2017, Heink et al. discovered IL-6 binds
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membrane-bound IL-6Ra on one cell (transmitting cell) and is
able to bind a gp130 receptor on another cell type (receiving cell)
for signal transduction (Figure 1, right) (37). Co-culture
experiments identified that gp130 receptors on T cells
responded to IL-6/IL-6Ra complexes on the membrane of
dendritic cells resulting in robust activation of STAT3.
Functionally, IL-6 cluster signaling allowed dendritic cells to
prime pathogenic T helper 17 cells. Since sgp130 is known to
antagonize IL-6 trans-signaling, but not classic signaling, Heink
et al. also investigated whether sgp130 is able to neutralize IL-6
cluster signaling. Although sgp130 did not show inhibitory
effects in this model, Lamertz et al. reported sgp130 to
neutralize IL-6 cluster signaling by directly binding to the IL-6/
IL-6Ra complex on a transmitting cell (65). Given these
contradictory findings, the IL-6 trans-presentation mechanism
in addition to its biological and pathogenic roles remains to be
characterized and elucidated.
IL-6 SIGNALING IN BREAST CANCER

Breast cancer is the most commonly diagnosed cancer in women.
Despite recent advancements in targeted therapeutics, remission
and survival in metastatic breast cancer patients remains poor
(1). Metastatic dissemination can be regulated by multiple
mechanisms including uncontrolled inflammation in the breast
tumor microenvironment through the secretion of chemokines,
growth factors, and cytokines to mediate immune evasion and
promote tumor progression (66, 67). Importantly, the tumor
microenvironment is comprised of a myriad of cell types, such as
tumor-associated macrophages (TAMs), helper T cells, bone
FIGURE 1 | Overview of IL-6/JAK/STAT3 Classic, Trans-signaling, and Trans-presentation. Classic Signaling (left) occurs when IL-6 binds membrane-bound IL-6Ra
leading to the subsequent formation of a trimeric receptor complex with signal-transducing subunit, gp130. Two trimeric IL-6/IL-6Ra/gp130 complexes bind through
the D1 domain of gp130 to form a hexameric receptor complex for intracellular signaling through the JAK/STAT3 pathway. JAKs are recruited to the membrane and
phosphorylate the cytoplasmic tail of gp130 and STAT3. pSTAT3 homodimerizes and translocates into the nucleus for activation of transcription. Trans-signaling
(middle) occurs when IL-6Ra presents in a soluble form through mRNA alternative splicing or proteolysis by ADAM10/17. IL-6 binds sIL-6Ra to form a hexameric
receptor complex through membrane-bound gp130 for signal transduction. Sgp130 antagonizes IL-6 signaling through sequestration of IL-6/sIL-6Ra. Trans-
presentation (right), or “cluster signaling,” occurs between two different cells. A gp130 receptor complex on a receiving cell responds to a IL-6/IL-6Ra complex on a
transmitting cell to induce downstream STAT3 signaling.
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marrow-derived cells, adipocytes, fibroblasts, and cancer cells
which secrete pro-inflammatory cytokines, such as IL-6. IL-6 can
be secreted in an autocrine or paracrine manner by both immune
and non-immune cells in the tumor microenvironment. The
mechanisms by which IL-6 mediates crosstalk between the
tumor microenvironment and tumor cells continues to be
investigated to develop therapeutic targets in breast cancer.
Specifically, IL-6 is of particular interest due to its increased
levels in sera of breast cancer patients when compared to normal
sera or tissue of healthy patients (68, 69). Increased IL-6 levels
can be a result of single nucleotide polymorphisms (SNPs) in the
promoter region of IL-6 gene, and have been demonstrated to
predict poor prognoses in breast cancer patients. IL-6 SNPs are
significantly associated with ER-positivity and results in a worse
disease-free survival (70). Specifically, the rs1800795 SNP in IL-6
is associated with an increased risk of breast cancer metastasis,
irrespective of ER status (71). Furthermore, IL-6 is upregulated
in sera of patients with advanced stages of breast cancer and in
patients presenting with metastases (68, 72). Notably, patients
with metastases at two or more sites have increased IL-6 sera
levels compared to patients presenting with one metastasis, and
high levels of IL-6 correlates with significantly worse survival in
metastatic breast cancer patients (72–74). In addition to IL-6,
clinicopathological analyses have been conducted on IL-6’s
corresponding receptor, IL-6R. Labovsky et al. identified IL-6
to positively correlate with IL-6R in breast cancer specimens, and
that IL-6/IL-6R are co-overexpressed in breast carcinomas when
compared to normal mammary tissues (75). Consequently,
higher serum levels of sIL-6R predicts a shorter relapse-free
survival in ER+ breast cancer patients (76). To complement
above findings, stromal expression of IL-6Ra in primary breast
carcinomas has been reported to be significantly correlated with
metastatic occurrence, and a worse disease-free and overall
patient survival (77). Moreover, IL-6 has also been reported to
correlate with therapeutic resistance in breast cancer patients
highlighting the IL-6/JAK/STAT3 pathway as an important
prognostic marker in breast cancer progression, chemoresistance,
and metastatic formation (78).

IL-6 Activation of STAT3
In pathophysiological states, IL-6 mediates inflammation while
concurrently regulating MAPK, PI3K, and JAK/STAT oncogenic
pathways (79). STAT3 is a primary downstream regulator of IL-6
signaling with its distinct role in regulating inflammation and
neoplastic transformation (80, 81). Although STAT3 activation is
tightly regulated under homeostatic conditions, overexpression
of upstream effectors such as IL-6, IL-6Ra, or gp130 or loss of
negative regulators (SOCS, PIAS, etc.) can lead to aberrantly
activated STAT3 (82). IL-6 and phosphorylated-STAT3
(phospho-STAT3, pSTAT3) are co-overexpressed in primary
breast cancer specimens (83). Upstream regulators that
mediate STAT3 activation include canonical cytokines, growth
factors, G-protein-coupled receptors, and microRNAs
(miRNAs); however, IL-6 remains the primary activator of
STAT3 signaling (84). For example, conditioned medium from
IL-6-positive breast cancer cells stimulated STAT3 phosphorylation
Frontiers in Oncology | www.frontiersin.org 4
in IL-6-negative breast cancer and non-cancerous epithelial cells,
while administration of anti-IL-6 antibodies abrogated these
effects (85). Furthermore, homozygous STAT3 knockout
tumors presented with decreased tumoral IL-6 expression and
reduced systemic IL-6 levels in an orthotopic mammary fat pad
(MFP) syngeneic mouse model (86). Functionally, the IL-6/JAK/
STAT3 signaling axis promotes proliferation, angiogenesis,
EMT, and the cancer stem cell (CSC) subpopulation, while
concurrently suppressing the antitumor immune response (87–
90). Secreted IL-6 induces expression of STAT3 target genes such
as cyclin D1, Bcl-2, Bcl-xL, VEGF, VEGFR2, and matrix
metalloproteinases (MMPs) (91–94). STAT3 is aberrantly
active in breast cancer and promotes cancer growth through
transcriptionally regulating target gene expression resulting in
induction of G1 cell cycle progression, proliferation, anti-
apoptosis, angiogenesis, and metastasis (95–97). Dysregulated
STAT3 activates immunosuppressive tumor-infiltrating
myeloid-derived suppressor cells (MDSCs), TAMs, and T
regulatory cells; STAT3 further induces expression of upstream
cytokines and growth factors creating a vicious autocrine and
paracrine positive feedback loop (86, 98–101). In addition to
STAT3, IL-6 can be further activated through nuclear factor
kappa B (NF-kB) signaling in breast cancer. IL-6 is repressed by
the let-7 miRNA, which targets the 3’-untranslated region (UTR)
of IL-6 mRNA. Activation of NF-kB represses let-7 and results in
super-activation of IL-6 and subsequent activation of STAT3
(102). OSM can also further activate IL-6/JAK/STAT3 signaling
both in vitro and in vivo to promote breast cancer progression.
More specifically, OSM synergizes with IL-1b to induce IL-6
secretion in ER+ and TNBC cells for further STAT3 activation
(25). Because STAT3 is constitutively active in the majority of
breast cancers and plays an important role in mediating breast
cancer growth, migration, and metastasis, this review will focus
on the IL-6/JAK/STAT3 signaling cascade (95, 103, 104).

IL-6/JAK/STAT3 Role in Breast Cancer
EMT and CSCs
Whether IL-6 enhances or inhibits breast cancer cell proliferation
in vitro remained controversial for several years. Early studies
reported recombinant IL-6 to inhibit or have no significant effect
on breast cancer cell proliferation (105–107). More recently, it has
become widely accepted IL-6 mediates an oncogenic role in
multiple cancers, including breast cancer, primarily through the
activation of STAT3. Since IL-6Ra and gp130 are required for
signal transduction, the previous contradictory results may have
been attributed to a lack of receptor expression in tested breast
cancer cell lines, or that IL-6’s pleiotropic effects may depend on
JAK/STAT3 pathway activation. For example, gp130 suppresses
cell-cycle progression by upregulating G1 cyclin/cyclin-dependent
kinase (CDK) inhibitor, p21, independent of STAT3. In stark
contrast, gp130-induced STAT3 signaling regulates cell cycle
transition from G1 to S phase by upregulating cyclins D2, D3, A,
and cell division cycle 25 A (CDC25A) while simultaneously
downregulating CDK inhibitors, p21 and p27, indicating
contradictory roles that may be regulated by the balance of
STAT3 (108).
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STAT3 is involved in proliferation and suppression of
apoptosis of breast tumor cells through the upregulation of
target genes cyclin D1, c-myc, Mcl-1, Bcl-2 and Bcl-xL (92,
109, 110). STAT3 also upregulates MMP2, MMP9, Twist, Snail,
and vimentin expression to mediate an EMT phenotype (87, 95,
111, 112). To complement these findings, STAT3 knockdown
resulted in a decrease in CD44+ subpopulation, mammosphere
formation, and protein expression of stemness genes Oct-4 and
Sox-2 in breast cancer cells (113). Sullivan et al. also reported IL-
6 induces the EMT phenotype in breast cancer cells, and found
IL-6 overexpressing breast cancer xenografts exhibited decreased
E-cadherin and increased vimentin protein expression (114).
More recently, Cho et al. utilized a microfluidic chip, which
mimics the breast cancer microenvironment and breast
metastatic phenotypes in vitro, and found that IL-6-treated
breast cancer cells successfully invaded into blood and lymph
vessels mimicking breast cancer lymphatic metastasis in vitro
(115). Others have reported IL-6 to promote breast cancer cell
proliferation, migration and invasion, and CSCs in breast cancer
(116–118). Notably, breast CSCs are known to play a significant
role in tumor recurrence and therapeutic resistance (119).
Interestingly, mammospheres derived from node-positive
breast carcinomas express higher levels of IL-6 when compared
to their respective non-malignant matched mammary tissues
indicating IL-6 may play a role in CSC renewal (120). Many
studies have further validated IL-6 as a key regulator of breast
CSCs. For example, IL-6 enriches the breast CSC subpopulation
where administration of IL-6 stimulates spheroid growth in
MCF-7 cells (120). To complement these findings, IL-6
enriches CD44+ cells as well as an EMT phenotype in breast
cancer in vitro (114, 121). To determine if IL-6-mediated breast
CSCs translates in vivo utilizing mouse metastasis models,
Korkaya et al. demonstrated PTEN knockdown activates the
IL-6 inflammatory loop which, in turn, promotes the breast CSC
subpopulation in HER2+/trastuzumab-resistant cells, tumor
growth, and secondary metastases in vivo (122).

In addition to breast CSCs, surrounding microenvironmental
cells are known to communicate with and prime secondary
organs for metastatic dissemination. Multiple mechanisms
mediate IL-6-induced breast cancer progression, such as
activation of autocrine/paracrine loops under inflammatory
conditions and IL-6’s impact on the surrounding tumor
microenvironment. For example, the oncogene Multiple
Copies in T-cell Malignancy-1 (MCT-1), a recently identified
prognostic biomarker in aggressive breast cancers, stimulates
M2 macrophages in the tumor microenvironment through
stimulation of IL-6. IL-6 promotes M2 macrophage
polarization while concurrently stimulating TNBC stemness
and tumor progression (123). IL-6 also functions in a
paracrine manner to promote an invasive phenotype in breast
cancer. For example, adipose stromal cells secrete IL-6 to
promote breast cancer migration and invasion in vitro using
the TNBC cell line, MDA-MB-231 (124). Further findings
confirmed adipocyte-secreted IL-6 induces EMT in luminal A
and TNBC cells through the activation of STAT3 (125).
Additionally, isolated fibroblasts from breast tissue and breast
cancer metastases secrete significantly more IL-6, enhance
Frontiers in Oncology | www.frontiersin.org 5
breast cancer cell growth, and induce pSTAT3 when
compared to normal skin fibroblasts supporting IL-6’s role in
priming the “soil” for organ-specific metastasis (126). Taken
together, the IL-6/JAK/STAT3 pathway is a major regulator of
breast cancer metastasis through promoting breast cancer cell
proliferation, EMT, enriching the breast CSCs, and
suppressing apoptosis.

IL-6/JAK/STAT3 in Metastatic Breast
Cancer Mouse Models
Given that the IL-6/JAK/STAT3 signaling axis promotes
metastatic phenotypes of breast cancer, researchers have
investigated the role of IL-6/JAK/STAT3 in breast cancer
metastasis in vivo to identify key drivers and therapeutic
interventions. IL-6 has been demonstrated to prime distant
sites for metastatic formation. For example, tumor secreted IL-
6 has been recently reported to enhance metastatic potential
through educating monocyte-dendritic progenitors to prime
distant organs for breast cancer metastasis. Magidey-Klein
et al. demonstrates IL-6 plays a functional role in mediating
crosstalk between primary tumors and the bone marrow to
promote monocyte-dendritic progenitors to give rise to
immunosuppressive macrophages which, in turn, promotes
metastasis in vivo (127). Whether IL-6 mediates organ-specific
breast cancer metastasis remains to be conclusively elucidated.
However, due to the prominent role of IL-6 in bone metabolism
and homeostasis, it is accepted IL-6 is associated with bone
metastases and osteoclastogenesis. Dysregulated IL-6 promotes a
pro-tumorigenic role in the bone microenvironment allowing
breast cancer cells to invade the bone. Consequently, breast
tumor cells secrete IL-6 in a paracrine manner to activate
osteolytic target genes, namely, PTHrP, RANKL, and DKK-1
(128). In addition to breast cancer bone metastases, recent
functional studies have demonstrated IL-6 to promote lung
metastases in breast cancer in vivo. Siersbæk et al. conducted
an intraductal xenograft implantation of an ER+ breast cancer
cell line overexpressing IL-6 and found a significant increase in
pSTAT3 in the primary tumors, as well as, an increase in
metastases in the lung in vivo (129). Moreover, another group
investigated metastatic potential of IL-6 via an intravenous
injection of a TNBC cell line overexpressing IL-6, and found
tumors to significantly increase lung metastases (86). To
complement these findings, Lin et al. reports CGI-99, or
C14orf166, enhances IL-6 transcription resulting in
hyperactivation of IL-6/STAT3 signaling to promote lung
metastases (130). There are multiple downstream effectors
under current mechanistic investigation for their role in
mediating IL-6-induced metastatic phenotypes in breast
cancer. For example, Nyati et al. identified a novel downstream
long noncoding RNA, AU021063, which is induced by IL-6
to promote breast cancer metastasis in vivo (131). While multiple
models are are currently under investigation, mechanistic
mouse models expand beyond the scope of this review. The
emerging role of IL-6/JAK/STAT3 in promoting the breast CSC
subpopulation and breast cancer metastases in vivo underscores
the therapeutic potential in exploiting the IL-6/JAK/STAT3
signaling axis in metastatic breast cancer.
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IL-6/JAK/STAT3 in Therapeutic Resistance
Since IL-6/JAK/STAT3 signaling upregulates breast CSCs which
are known to mediate metastasis and therapeutic resistance, it is
to no surprise that IL-6 has been shown to play a role in
chemoresistance. IL-6 secretion and expression is significantly
elevated in therapeutically resistant breast cancer cells when
compared to their respective parental lines. Furthermore,
administration of recombinant IL-6 induced chemoresistance
through upregulation of drug-resistant gene, mdr1, in breast
cancer cells (132). Wang et al. identified STAT3 induces breast
CSC renewal and chemoresistance through upregulation of fatty
acid b-oxidation; administration of leptin resensitized breast
tumors to chemotherapy in vivo (133). Furthermore, activation
of the IL-6 inflammatory loop induces trastuzumab-resistance in
HER2+ breast cancer cells indicating that IL-6’s pro-
inflammatory role mediates breast cancer therapeutic
resistance (122). Given these findings, studies have aimed to
utilize IL-6/JAK/STAT3 signaling inhibition in combination
with current standard-of-care (SOC) treatment (Tables 1, 2).
Administration of Bcl-2 antagonist, sabutoclax, concurrently
suppresses IL-6/STAT3 signaling to resensitize chemoresistant
breast cancer cells to chemotherapeutic agents (175). Using a
resistant ER+ patient-derived xenograft (PDX) mouse model,
Siersbæk et al. reported a significant reduction in tumor growth
with treatment of STAT3 inhibitor, ruxolitinib, but not
fulvestrant alone, a SOC treatment for ER+ breast cancer
(129). Clinically, cytoplasmic staining of IL-6Ra is significantly
correlated with tamoxifen resistance in ER+ breast cancer
patients suggesting IL-6/JAK/STAT3 is an actionable
therapeutic target to sensitize tumor cells to current SOC
treatment (78). To summarize, the IL-6/JAK/STAT3 signaling
pathway mediates breast cancer progression, metastasis, and
therapeutic resistance thus justifying investigations into IL-6/
JAK/STAT3 as a targeted therapy for breast cancer patients.
CURRENT THERAPEUTIC APPLICATIONS
OF IL-6 SIGNALING IN BREAST CANCER

Due to the heterogeneity of breast cancer,molecular classifications
help determine which tumors may respond to targeted therapy.
Each breast cancer subtype corresponds to a different prognosis
and treatment regimen. Patients with luminal A and B breast
cancer subtypes typically respond to targeted treatments such as
tamoxifen, fulvestrant, or aromatase inhibitors; luminal patients
have the most treatment options and better prognoses (196).
HER2-enriched breast cancers initially respond to anti-HER2
antibodies such as Food and Drug Administration (FDA)-
approved traustuzumab, lapatinib, pertuzumab, ado-
trastuzumab emtansinse, and fam-trastuzumab (197–200), while
TNBC patients have limited to no treatment options. Since TNBC
tumors lack expression of ER, PR, and HER2, TNBC patients lack
sensitivity to endocrine and molecular targeted treatments.
Current SOC for TNBC patients includes systemic neoadjuvant
chemotherapy and surgical resection (201). HER2-enriched breast
cancer and TNBC are considered to be the most aggressive
Frontiers in Oncology | www.frontiersin.org 6
subtypes and maintain a higher propensity to metastasize (202).
Metastatic HER2-enriched patients commonly acquire resistance
to HER2-targeted therapies within one year, emphasizing the
importance in developing novel therapeutics to treat or sensitize
metastatic HER2-enriched tumors to current SOC treatment
(203). Current findings elucidating the role of IL-6 in breast
cancer progression, metastasis, and anti-cancer immunity,
suggest the IL-6/JAK/STAT3 signaling pathway is an actionable
target with preclinical and clinical studies demonstrating
therapeutic potential in both primary and metastatic breast
cancer. Notably, inhibiting the IL-6/JAK/STAT3 signaling axis
has been investigated through directly targeting either IL-6, IL-
6Ra, gp130 receptor, JAKs, or STAT3.

IL-6 Inhibitors
The FDA has yet to approve IL-6/JAK/STAT3 pathway inhibitors
for breast cancer. However, monoclonal antibodies (mAb) and
small molecule inhibitors are under preclinical (Table 1) and
clinical (Table 2) investigation. Siltuximab is a chimeric IL-6
mAb which received FDA-approval for the treatment of
multicentric Castlemans disease in 2014 (204). Morancho and
others examined the efficacy of siltuximab in several PDX models,
and found only two of the six lines responded to siltuximab
treatment. Contradictory to previous findings, they did not find a
significant reduction in pSTAT3 in all PDX cultures after
inhibiting IL-6, indicating that identification of IL-6-dependent
tumors is important for anti-IL-6 therapies to be efficacious (134).
For example, serum IL-6 may be used as a biomarker for IL-6-
mediated treatment. Casneuf et al. analyzed the IL-6 serum levels
of ERa-positive breast cancer patients and found IL-6 sera levels
to be significantly correlated with intratumoral pSTAT3 protein
expression. Furthermore, pretreatment of siltuximab reduced
tumor growth in an ERa-positive breast cancer xenograft mouse
model. Casneuf et al. also investigated a combination treatment
using siltuximab and fulvestrant, and found combination
treatment to attenuate tumor growth suggesting that IL-6/JAK/
STAT3 combination therapy may sensitize tumors to SOC
treatment (135). MEDI5116 is a novel anti-IL-6 mAb which
neutralizes IL-6, is efficacious against HER2+ trastuzumab-
resistant tumors, suppresses NF-kB signaling, and lung
metastases (136). NF-kB promotes an IL-6 feed-forward
inflammatory loop, whereas interruption of IL-6/NF-kB
signaling may counteract IL-6-induced breast cancer
chemoresistance and requires further investigation (102).

IL-6Ra Inhibitors
Multiple anti-rheumatic agents targeting IL-6, IL-6Ra, and JAKs
have gained FDA-approval and have transformed treatment
outcomes for autoimmune and inflammatory diseases. In 2010,
tocilizumab was the first approved in the United States for the
treatment of rheumatoid arthritis (RA). Tocilizumab is a
humanized anti-IL-6Ra mAb that competitively binds IL-6Ra
and disrupts the IL-6/IL-6Ra complex in both classic and trans-
signaling. Tociluzumab has a favorable safety and toxicity profile,
and is now used for the treatment of juvenile idiopathic arthritis,
adult-onset still’s disease, giant cell arthritis, chimeric antigen
receptor T cell-induced cytokine release syndrome, and systemic
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TABLE 1 | Targeting IL-6/JAK/STAT3 Signaling in Preclinical Breast Cancer Models.

Compound Target Models Used Citation

Siltuximab IL-6 Human marrow stromal-cell conditioned MCF-7 engraftment in MFP xenograft mouse model as single
agent and in combination with Fulvestrant; Treatment in six orthotopically implanted PDX lines in vivo.

(134,
135)

MEDI5117 IL-6 Treatment as a single agent in MCF-7 xenograft, combination with taxanes or gefitinib in KPL-4 orthotopic
mouse model, and trastuzumab-resistant breast tumor xenograft mouse model (BT474-PTEN-LTT).

(136)

Tocilizumab (Actemra®) IL-6Ra Intracardiac inoculation of MDA-MB-231 in vivo; metastatic trastuzumab-resistant SUM-159-HER2+-PTEN-

cells implanted into MFP mouse model to analyze tocilizumab +/- perifosine compared to docetaxel,
trastuzumab-resistant BT474-PTEN- xenograft mouse model to assess tocilizumab +/- trastuzumab; MFP
xenograft mouse model injected with MCF10A-Erb2*, MDA-MB-361, BT-474, or HCC1954 cells and PDX
xenograft mouse model; MDA-MB-231 and 4T1 mammosphere assays in vitro; Tamoxifen-resistant cell
line, LCC2, used in xenograft mouse model and analyzed tocilizumab +/- tamoxifen in vivo.

(137)
(78,
122,
123,
138)

Diacerein IL-6Ra MDA-MB-231 xenograft mouse model. (139,
140)

Manuka Honey IL-6Ra In vitro findings using MDA-MB-231 cells. (141)
Tubulosine IL-6Ra/

gp130
In vitro findings using MCF10A, Hs578T, MCF-7, MDA-MB-231, and MDA-MB-468 cells. (142)

Chikusetsusaponin IVa Butyl
Ester (CS-IVa-Be)

IL-6Ra In vitro findings using MCF-7 and MDA-MB-231 cells. (143)

Bazedoxifene gp130 Xenograft mouse model inoculated with SUM159 or MDA-MB-231 cells in MFP and both sides of flank
area.

(144,
145)

Raloxifene gp130 In vitro findings using SUM-159 cells; in vitro findings using MDA-MB-231 cells. (144,
146)

Ruxolitinib JAK1/2 Treated as a single agent in MFP xenograft mouse model injected with MCF10A-Erb2*, HCC-70, T47D, or
MDA-MB-231 cells, treated +/- trastuzumab in MFP mouse model inoculated with either PDX or MDA-MB-
361, BT-474, or HCC1954 cells, transgenic MMTV-ErB2 +/- trastuzumab.

(138)

Glyceryl Trinitrate JAK2 In vivo findings using 4T1 cells inoculated in right flank using syngeneic mouse model. (147)
Pentadecanoic acid JAK2 In vitro findings using normal MCF10A and MCF-7 stem-like cells (MCF-7/SC). (148)
1-ferrocenyl-3-(4-
methylsulfonylphenyl)propen-1-
one

JAK2 In vitro findings using MCF-7 cells. (149)

LYF-11 JAK2 In vitro findings using MCF-7 cells. (150)
Withaferin A JAK2 In vitro findings using MCF-7 and MDA-MB-231 cells. (151)
AG490 JAK2 In vitro findings using MDA-MB-231 cells. (152)
Naphtho[1,2-b]furan-4,5-dione
(NFD)

JAK2 In vitro findings using MDA-MB-231 cells. (153)

3-deoxy-2b,16-
dihydroxynagilactone E

JAK2 In vitro findings using MDA-MB-231, MDA-MB-453, MDA-MB-468, and A549 cells. (154)

Tagalide A JAK2 In vitro findings using MDA-MB-231, MDA-MB-453, SKBR3, MCF-7, MT-1, ZR-75-1 cells. (155)
Ganoderic acid A JAK2 In vitro findings using MDA-MB-231 cells. (156)
Methylseleninic acid JAK2 In vitro findings using 4T1 cells, and use of syngeneic MFP mouse model using 4T1 cells. (157)
7b-(3-Ethyl-cis-crotonoyloxy)-1a-
(2-methylbutyryloxy)-3,14-
dehydro-Z-notonipetranone
(ECN)

JAK1/2 In vitro findings using MDA-MB-231 cells. In vivo findings using MFP xenograft mouse model using MDA-
MB-231 cells.

(155)

Stattic STAT3 Identification of Stattic and in vitro findings in MDA-MB-435S and MDA-MB-456 cells; Stattic treatment
decreases cell survival of MCF7-HER2 cells in vitro; In vitro findings with doxorubicin on ZR-75-1 breast
cancer cells.

(113,
158,
159)

STA-21 STAT3 In vitro findings using MDA-MB-231, MDA-MB-435s, and MDA-MB-468 cells in vitro. (160)
FLLL31/FLLL32 STAT3 Xenograft mouse model inoculated with MDA-MB-231 cells in flank. (161)
6a STAT3 In vitro findings using MDA-MB-231 cells. (162)
LLL12 STAT3 Inoculated MDA-MB-231 cells in right flank in xenograft tumor mouse model. (163)
CDDO-Me STAT3 In vitro findings using MDA-MB-468 cells; in vivo findings of CDDO-Me and its impact on breast tumor

microenvironment.
(164,
165)

Naringenin STAT3 In vitro findings using MDA-MB-231 cells. (166)
Ilamycin C STAT3 In vitro findings using MDA-MB-231, BT-549, MCF-7, and normal MCF10A cells. (167)
Esculentoside A STAT3 Reduces IL-6/STAT3 signaling through targeting breast CSCs, and inoculated murine breast CSCs

(EMT6M) in syngeneic xenograft mouse model.
(168)

Catechol STAT3 In vitro findings using MDA-MB-231 and MCF-7 cells. (169)
Dihydrotanshinone STAT3 In vitro findings using MCF-7 and MDA-MB-231 cells. MFP xenograft mouse model inoculated with MCF7

cells.
(170)

WP1066 STAT3/JAK2 In vitro findings in MDA-MB-231BR and BT-474BR cells; WP1066 reduces brain metastasis incidence
in vivo

(94)

DT-13 gp130/
STAT3

In vitro findings using MDA-MB-231 and MDA-MB-468 cells. (171)

(Continued)
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associated-interstitial lung disease (205–207). In 2021,
Tocilizumab received an emergency use authorization for the
COVID-19 patients above the age of 2 years old (208).

Due to its diverse application, tocilizumabhas been investigated
in multiple cancers extensively, including breast cancer. Direct
inhibition of IL-6Ra using tocilizumab effectively sensitizes
resistant ER+ cells to tamoxifen in vitro and in vivo (78). HER2+
cells treated with tocilizumab or ruxolitinib, a JAK1/2 inhibitor,
Frontiers in Oncology | www.frontiersin.org 8
had reduced pSTAT3 protein expression, and increased cell
apoptosis. Tocilizumab suppresses tumor volume, pSTAT3
protein expression, and cell proliferation (Ki67) in HER2+
orthotopic xenograft tumors (138). Administration of
tocilizumab also reduces IL-6-mediated tumor growth, breast
CSCs, and the development of secondary metastases in a PTEN-/
HER2+/trastuzumab-resistant xenograft mouse model (122).
Furthermore, tocilizumab inhibits TNBC mammosphere
TABLE 1 | Continued

Compound Target Models Used Citation

S3I-201 STAT3 In vitro findings using MDA-MB-231, MDA-MB-435, and MDA-MB-468 cells, and suppresses tumor
growth of MDA-MB-231 tumors in vivo.

(172)

Cucurbitacin E STAT3/JAK2 In vitro findings in MDA-MB-231 and Bcap37 cells. (173)
5,15-diphenylporphyrin STAT3 Usage of MDA-MB-435 cells in vitro. (174)
Sabutoclax STAT3 Bcl-2 antagonist, sabutoclax, reduces MCF7/A02 CSC population through inhibiting IL-6/STAT3 signaling. (175)
Niclosamide STAT3 Usage of MDA-MB-468 and MCF-7 cells in vitro. (176)
Galiellalactone and two
analogues (SG-1709 and SG-
1721)

STAT3/
JAK1/2

In vitro findings in MDA-MB-468 cells; analysis of combination with radiotherapy; in vivo treatment using
breast xenograft tumor growth in vivo.

(177)

Nifuroxazide STAT3 In vitro findings using MCF-7, MDA-MB-231, and 4T1 cells in vitro; Nifuroxazide suppressed in vivo
investigation using 4T1 mouse model and analysis of lung metastases in vivo.

(178)

LLY17 STAT3 Usage of T47D cells in vitro, MDA-MB-468, MDA-MB-231, SUM159, and BT-549 cells in vitro. (179)
Schisandrin A STAT3 In vitro findings using MCF7 cells. (180)
6Br-6a STAT3 In vitro findings in MDA-MB-231 and MCF-7 cells; MDA-MB-231 mouse xenograft tumors in vivo (181)
Pyrimethamine STAT3 In vitro findings using TUBO and TM40D-MB. (182)
Pectolinarigenin STAT3 Findings using MCF-7, 4T1, and MDA-MB-231 cells in vitro; 4T1 breast cancer lung metastasis mouse

model in vivo
(183)

Flubendazole STAT3 In vitro findings using MDA-MB-231, Hs578T, BT-549, and 4T1 cells. In vivo metastasis models using 4T1-
derived stem-like cells.

(184)

Eupalinolide J STAT3 In vitro findings using HEK293 and MDA-MB-468 cells. (185)
Betulinic acid STAT3 In vitro findings using 4T1 and MDA-MB-231 cells. In vivo syngeneic subcutaneous mouse model using

4T1 cells.
(186)

Napabucasin STAT3 In vitro findings using MDA-MB-231 cells. (187)
Coumarin-benzo[b]thiophene 1,
1-dioxide

STAT3 In vitro findings using MDA-MB-231, HCT-116, MCF-7, and MCF-10 A cells. In vivo subcutaneous mouse
model using 4T1 cells.

(188)

Carfilzomib STAT3 In vitro findings using MDA-MB-231 cells. (189)
Deguelin STAT3 Usage of MDA-MB-231, MDA-MB-468, BT-549, and BT-20 cells in vitro; Deguelin reduced tumor growth

of MDA-MB-231 cells in vivo.
(190)

Picrasidine G STAT3 MDA-MB-468 cells compared to other breast cancer cells in vitro; Picrasidine G increases apoptosis in
MDA-MB-468 cells in vitro.

(191)

Cantharidin STAT3 In vitro findings in MDA-MB-231 cells. (192)
March 2022 | Volume 12 | Articl
TABLE 2 | Clinical Studies Targeting IL-6/JAK/STAT3 in Breast Cancer.

Compound Target Brief Summary Citation

Tocilizumab IL-6Ra Tested in combination with trastuzumab and pertuzumab in metastatic trastuzumab-resistant HER2+ breast cancer patients
(Phase I: Completed); Under current investigation for treatment of COVID-19 in breast cancer versus non-cancer patients
(Phase II); Immunotherapy-based treatment combinations in metastatic or inoperable locally advanced TNBC under current
investigation (Phase Ib/II)

NCT03135171,
NCT04871854,
NCT03424005

Sarilumab IL-6Ra Combination therapy with capecitabine in metastatic TNBC (Phase I), and in Stage I-III TNBC with high risk residual disease
(Phase II).

NCT04333706

Ruxolitinib JAK1/2 Combined with capecitabine in advanced or metastatic HER2- breast cancer (Phase II: Terminated); Investigated in pSTAT3
+ patients with metastatic or unresectable locally advance breast cancer (Phase II: Terminated); Combination therapy with
Trastuzumab in metastatic HER2+ breast cancer (Phase I/II: Completed); Evaluated combination therapy with paclitaxel in
advanced or metastatic breast cancer (Phase I/II: Completed); Combination therapy with exemestane in ER+ advanced
breast cancer (Phase II: Completed); Current investigation of combination therapy with paclitaxel, doxorubicin, or
cyclophosphamide in TNBC (Phase II); Under current investigation of combination therapy with pembrolizumab in metastatic
stage IV TNBC (Phase I); Under current clinical investigation in patients with high risk and premalignant breast conditions
(Phase II).

NCT02120417;
NCT01562873;
NCT02066532;
NCT02041429;
NCT01594216;
NCT02876302;
NCT03012230;
NCT02928978
(193–195)

TTI-101 STAT3 TTI-101 given by mouth; administration of TTI-101 in mice blocked growth of multiple cancers including breast and was
safe at high doses; Phase I study of TTI-101 in patients with advanced cancers as an interventional clinical trial.

NCT03195699
e 866014
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formation and suppressesmRNA expression of stemnessmarkers:
CD44, CD133, ALDH-1, EpCAM, Snail, Nanog, Oct-4, and Sox2
(123). Utilizing a TNBC intracardiac mouse model to model
metastases, tocilizumab significantly suppresses bone metastases
and osteoclast formation in vivo (137). Additionally, Jin et al.
reported TNBC cells to secrete IL-6 in order to communicate with
lymphatic endothelial cells to produce chemokine (C-C motif)
ligand 5 (CCL5) to upregulate breast cancer lymph node
metastasis. Combination treatment of tocilizumab and
maraviroc, a CCR5 inhibitor, significantly reduces migratory and
invasive phenotypes in TNBC cells in vitro, and breast cancer
metastases in a TNBC xenograft mousemodel in vivo (209). Given
these results, tocilizumab proceeded to multiple clinical
investigations (Table 2).

Tocilizumab was recently investigated in combination with
trastuzumab and pertuzumab in metastatic trastuzumab-resistant
HER2+ breast cancer patients in a Phase I clinical trial. This
clinical study was completed March 20, 2020 and results are still
under review (NCT03135171). Interestingly, tocilizumab is also
under clinical investigation for severe COVID-19 treatment in
breast cancer versus non-cancer patients where SOC
chemotherapy may exacerbate severity of COVID-19 infection
(NCT04871854). Tocilizumab in combination with atezolizumab
and nab-paclitaxel is also under clinical investigation for safety of
immunotherapy-based combination treatment in metastatic or
inoperable locally advanced TNBC (NCT03424005). Sarilumab,
an additional FDA-approved anti-IL-6Ra mAb for RA, which
blocks both membrane-bound and soluble IL-6Ra, is under
current Phase I and II clinical investigation in combination
with capecitabine in stage I-III TNBC and metastatic TNBC
patients (NCT04333706).

While IL-6Ra mAbs, tocilizumab and sarilumab, have made
recent headway in clinical studies for breast cancer, drug
repurposing remains an attractive therapeutic strategy to
minimize the expensive, time-consuming drug development
process (210). Diacerin, a non-steroidal anti-inflammatory drug
used to treat osteoarthritis, directly interacts with IL-6Ra to
suppress IL-6-induced phosphorylation of gp130, JAK1/2,
STAT3, and MAPK in two TNBC cell lines. Furthermore,
diacerin inhibits IL-6-induced STAT3 nuclear localization and
transcriptional activity in TNBC cells, and significantly reduces
tumor volume and induces apoptosis when compared to vehicle
treated mice. Diacerin treatment reduces protein expression of IL-
6Ra, pSTAT3, pMAPK, pAKT inTNBC tumor sections indicating
diacerin could inhibit multiple IL-6-regulated oncogenic
pathways (139).

Another strategy uses natural products as anti-cancer therapies.
Aryappalli and colleagues report Manuka honey antagonizes IL-
6Ra which inhibits downstream gp130, pJAK2, and pSTAT3;
Manuka honey flavonoids, luteolin, chrysin, quercetin, and
galangin disrupt IL-6 binding to IL-6Ra (141). Investigation of
anti-cancermechanismsof tubulosine, originally isolated frombark
of Pogonopus tubulosus in 1964, identified tubulosine as a potent
inhibitor of JAK2/STAT3 signaling through disruption of IL-6/IL-
6Ra/gp130 complex formation (142). Furthermore, a triterpenoid
saponin extracted from traditional Chinese medicine,
Chikusetsusaponin IVa Butyl Ester (CS-IVa-Be), exhibits
Frontiers in Oncology | www.frontiersin.org 9
immunomodulatory effects by directly binding and antagonizing
IL-6Ra. CS-Iva-Be reduces IL-6-induced STAT3 transactivation,
TNBCcell viability, and synergizeswithTRAIL to induce apoptosis
in MDA-MB-231 cells (143). Overall, modulating IL-6/IL-6Ra
interaction shows promising results in all subtypes of breast
cancer mediated by IL-6/JAK/STAT3 signaling.

gp130 Inhibitors
The gp130 receptor has evolved as an attractive therapeutic target
to prevent downstream IL-6 signaling. Interestingly, small
molecules which are FDA-approved for other therapeutic
implications have been identified to have gp130 inhibitory
effects. Since gp130 is the signal-transducing subunit for all IL-6
family cytokines, few gp130 inhibitors are able to maintain
selectivity against IL-6. Bazedoxifene, an FDA-approved selective
estrogen receptor modulator (SERM) with conjugated estrogens,
was previously identified to reduce breast cancer cell proliferation
and downregulate ERa and cyclin D1; however, its antitumor
mechanism was not elucidated until recently (211). Interestingly,
since the IL-6 family of cytokines bind different regions on the
surface of gp130, bazedoxifene is able to selectively inhibit IL-6-
induced STAT3 in TNBC both in vitro and in vivo through direct
binding of the gp130’s D1 domain (144, 145). Bazedoxifene was
identified using a multiple-ligand simultaneous docking and drug
repositioning approach in order to identify a small molecule that
was able to directly bind into “hot-spot” residues on gp130 to
prevent protein-protein interactions between IL-6 and gp130.
Bazedoxifene inhibits STAT3-mediated transcriptional activity
and, in turn, suppresses breast cancer colony formation,
migration, and invasion. Bazedoxifene also reduces TNBC tumor
volume suggesting the translational potential of the compound as
an IL-6/JAK/STAT3 inhibitor (145). Whether bazedoxifene can
inhibit IL-6-induced metastatic formation in TNBC is not known.
Since bazedoxifene is FDA-approved with a favorable safety
profile, bazedoxifene may provide clinical utility as a repurposed
compound for the treatment of TNBC, but requires further
investigation. Raloxifene, an additional FDA-approved SERM,
has also been identified to directly bind to gp130 and suppress
STAT3 activation in a TNBC cell line, SUM-159 (144). To further
complement these findings, another group identified raloxifene to
suppress breast cancer cell viability using another TNBC cell line,
MDA-MB-231 (146). In 2007, raloxifene gained FDA-approval for
thepreventionof invasivebreast cancer inpostmenopausalwomen
(212, 213). Currently, raloxifene is not approved for treatment of
breast cancer. Of note, bazedoxifene and raloxifene are both FDA-
approved for the prevention of postmenopausal osteoporosis, and
have been reported to prevent bone loss and increase bonemineral
density (214). Since the bone is a commondistant site ofmetastasis
in breast cancer, and breast cancer bone metastatic patients suffer
from microfractures and severe pain, raloxifene and bazedoxifene
may provide additional benefits in addition to treating primary
breast tumors (215).

JAK Inhibitors
Another approach to targeting the IL-6/JAK/STAT3 signaling
axis is through direct JAK inhibition of one or multiple JAK
family of enzymes. Tofacitinib, ruxolitinib, baricitinib, and
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upadacitinib are all FDA-approved JAK inhibitors for
implications other than breast cancer, e.g. RA, psoriatic
arthritis, severe ulcerative colitis, polyarticular course juvenile
idiopathic arthritis, myelofibrosis (216–220). Ruxolitinib is a
bioavailable tyrosine kinase inhibitor of both JAK1 and JAK2,
and was invest igated in metastat ic TNBC patients
(NCT01562873). pSTAT3-positive metastatic TNBC patients
were enrolled in a non-randomized Phase II study to examine
ruxolitinib safety and efficacy. Although ruxolitinib was well-
tolerated and exhibited on-target activity, this clinical study did
not reach its primary efficacy endpoint indicating alternative
mechanisms may mediate resistance (193). To potentially
overcome this barrier, ruxolitinib is under current clinical
investigations to examine combination treatments with
paclitaxel, doxorubicin, cyclophosphamide, or pembrolizumab
in TNBC patients (Table 2) (NCT03012230; NCT02928978).
Furthermore, additional JAK inhibitors have been investigated
preclinically and are demonstrated to be efficacious in vivo.
Glyceryl trinitrate inhibits JAK2 through s-nitrosylation to
suppress IL-6-induced migration and invasion in TNBC cells.
Additionally, glyceryl trinitrate infusion decreases lung
metastatic lesions in a TNBC syngeneic mouse model (147).
Pentadecanoic acid suppresses the CSC subpopulation through
inhibition of IL-6/JAK/STAT3 signaling and increases apoptosis
in ER+ breast cancer cell line; however, the exact mechanism
remains unknown (148). In vitro evidence identified a ferrocene
derivative, 1- ferrocenyl-3-(4-methylsulfonylphenyl)propen-1-
one (FMSP), that reduces IL-6-induced downstream effectors,
CSC renewal, and downregulates stemness markers: Wnt1,
Notch1, b-catenin, SOX2, CXCR4, and ALDH1A1 (149). Liu
et al. investigated multiple derivatives of 2-phenyl-1,8-
naphthyridin-4-one and identified LYF-11 which blocked IL-6-
mediated EMT through the suppression of phosphorylated JAK2
(150). Direct mechanisms and efficacy in vivo of inhibitors listed
above remain to be investigated. Other JAK inhibitors
investigated preclinically in breast cancer include withaferin A,
AG490, naphtho[1,2-b]furan-4,5-dione, 3-deoxy-2b,16-
dihydroxynagilactone E, tagalide A, ganoderic acid A,
methylseleninic acid, and 7b-(3-Ethyl-cis-crotonoyloxy)-1a-(2-
methylbutyryloxy)-3,14-dehydro-Z-notonipetranone (Table 1).
While JAK inhibition remains heavily studied in multiple
cancers, the FDA has administered safety warnings against
JAK inhibitors underscoring the need to investigate additional
approaches to target the IL-6/JAK/STAT3 pathway (221).

STAT3 Inhibitors
STAT3 has gained significant attraction as an actionable anti-
cancer therapeutic; however, there are currently noFDA-approved
STAT3-targeted therapies for the treatment of cancer. Therefore,
multiple studies have investigated novel small-molecule
compounds which negatively regulate STAT3 activation in breast
cancer (222) (Table 1). Strategies for STAT3 inhibition include
disruption of STAT3 phosphorylation, dimerization, nuclear
translocation, or prevention of DNA binding. In 2006, stattic was
identified as a small-molecule that disrupts the src homology-2
(SH2)domainof STAT3, and therebyprevents STAT3recruitment
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to gp130 on the cell membrane (158). Functionally, increasing
doses of stattic was able to prevent STAT3 dimerization and
nuclear translocation resulting in a subsequent decrease in IL-6-
induced pSTAT3. Stattic induces apoptosis in TNBC cells (158).
Since its discovery, others have identified stattic to be efficacious
against breast CSCs through the downregulation of STAT3
stemness genes Oct-4, Sox-2, and Slug (113). Combination
studies also reveal stattic is synergistic with SOC therapeutic,
doxorubicin, and suppresses anti-apoptotic genes, Bcl-2 and Bcl-
xL, to promote breast cancer cell apoptosis (159). Interestingly,
another STAT3 inhibitor, STA-21, also directly binds to the SH2
domain of STAT3 to repress STAT3 transcriptional activity, and is
efficacious inTNBCcells in vitro (160).Utilizing a structural-based
computational screening approach, S3I-201was identified to target
the SH2 domain of STAT3 and suppress downstream signaling to
induce breast cancer cell apoptosis and exhibit activity in vivo in a
TNBC mouse model (172). Additionally, small molecule STAT3
inhibitors, FLLL31 and FLLL32, are derivatives of curcumin and
selectively bind to the JAK2 and STAT3 SH2 domain. The JAK2
and STAT3 SH2 domain is essential for STAT3 phosphorylation,
therefore, inhibition disrupts STAT3 dimerization and
translocation required for activation of STAT3 transcriptional
activity. Subsequently, downstream STAT3 target genes are
significantly downregulated upon increasing doses of FLLL31
and FLLL32. FLLL31 exhibits efficacy in vivo where systemic
administration reduced tumor growth and vascularity in a
TNBC xenograft mouse model (161).

Other novel molecules have been identified to exhibit anti-
STAT3 activity by inhibiting STAT3 phosphorylation. LLL12,
prevents IL-6-induced STAT3 phosphorylation at Y705, and
demonstrates efficacy in vivo in a TNBC MFP mouse model
with a concomitant reduction in tumor volume and pSTAT3
expression (163). Interestingly, novel JAK2/STAT3 inhibitor,
WP1066, can penetrate the blood-brain-barrier, suppress brain
metastases in vivo, and prolong overall survival in mice
inoculated with brain-trophic TNBC breast cancer cells via an
intracardiac injection. WP1066 also reduces breast cancer cell
viability and cell invasion in brain-trophic breast cancer cells
through the reduction of STAT3 target genes, MMP-9 and
VEGFR2 (94). Furthermore, Zinzalla and colleagues
synthesized multiple pyrrolidinesulphonylaryl molecules and
identified compound, 6a, to selectively inhibit IL-6-induced
pSTAT3 in TNBC cells, and inhibit cell growth in STAT3-
dependent but not STAT3-null cells demonstrating its
dependency on STAT3 for inhibition (162). Additional novel
STAT3 inhibitors that have been investigated preclinically for the
treatment of breast cancer include: LLY17, 6Br-6a, napabucasin,
and coumarin-benzo[b]thiophene 1, 1-dioxide conjugates
(Table 1) (179, 181, 187, 188).

Interestingly, multiple natural compounds have been
identified to suppress STAT3 activity and exhibit anti-cancer
properties. For example, CDDO-Me is a triterpenoid with anti-
inflammatory properties and suppresses activated STAT3
protein expression, nuclear translocation, and STAT3 anti-
apoptotic genes in ovarian and breast cancer in vitro (164).
Other natural compounds which have exhibited anti-cancer
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properties in breast cancer through modulation of STAT3
activity include: naringenin, ilamycin C, esculentoside A,
catechol, dihydrotanshinone, DT-13, cucurbitacin E,
galiellalactone, schisandrin A, pectolinarigenin, eupalinolide J,
betulinic acid, deguelin, picrasidine G, and cantharidin (Table 1)
(166–171, 173, 177, 180, 183, 185, 186, 190–192). Compounds
have also been repositioned for the treatment of breast cancer
due to their anti-cancer activity through inhibition of STAT3,
and are under preclinical investigation. For example, niclosamide
is currently FDA-approved as an anti-parasitic drug, yet
treatment exhibited inhibition of IL-6-induced STAT3
activation resulting in suppression of adipocyte-induced EMT
in breast cancer cells (176). Additionally, nifuroxazide, an
antibiotic, exhibits anti-STAT3 activity and suppresses breast
cancer tumor growth and lung metastases (178). Additional
repurposed compounds under preclinical investigation for
inhibition of STAT3 activity include pyrimethamine,
flubendazole, and carfilzomib (Table 1) (182, 184, 189). While
STAT3 inhibitors have been extensively investigated
preclinically, only one compound is under current clinical
investigation. TTI-101 is a novel small molecule STAT3
inhibitor, and is in a Phase I clinical trial examining
pharmacokinetics and compound safety in advanced breast
cancer patients as well as patients with unresectable solid
tumors (NCT03195699).
CONCLUSIONS

Under normal conditions, IL-6 is an important regulator in acute
phase immune responses and modulates both anti- and pro-
inflammatory reactions. Breast cancer cells can hijack the IL-6/
JAK/STAT3 signaling to evade normal immune responses and
further promote tumor growth by activating surrounding
microenvironmental cells. Therefore, it remains pertinent to
maintain a homeostatic balance of IL-6/JAK/STAT3 as
dysregulation creates a vicious autocrine and paracrine
inflammatory loop which promotes breast cancer metastasis
and therapeutic resistance. Recent reports extensively elaborate
on IL-6’s pleiotropic effects and pro-metastatic role in breast
cancer; however, current evidence on whether IL-6 promotes
site-specific metastases requires further investigation. Due to
recent evidence of IL-6 inducing the CSC subpopulation and
Frontiers in Oncology | www.frontiersin.org 11
mediating therapeutic resistance in breast cancer, preclinical
investigations in metastatic breast cancer focus on targeting
this pathway with either mAbs, novel small molecule
compounds, or by repurposing current FDA-approved
compounds. Multiple actionable therapeutic targets reside in
the IL-6 pathway including inhibition of IL-6 directly, IL-6Ra,
gp130 receptor, JAKs, or STAT3. While there remains a plethora
of preclinical studies analyzing IL-6/JAK/STAT3 inhibitors on
breast cancer growth, there remains an urgent gap analyzing
compound efficacy against breast cancer metastases in vivo.
Additionally, since IL-6 modulates multiple physiological
processes and oncogenic pathways, elucidating effective
biomarkers for breast cancer patients who could benefit from
targeted IL-6/JAK/STAT3 inhibitors could aid in the development
of therapeutics for metastatic breast cancer patients.
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