Chapter 5
STAT3 Inhibitors in Cancer: A Comprehensive
Update

Uddalak Bharadwaj, Moses M. Kasembeli, and David J. Tweardy

Abstract STATS3 is an important signaling molecule that modulates a wide range
of genes by relaying extracellular signals from the plasma membrane to the nucleus
in response to peptide hormone binding. It is known to play a prominent role in the
initiation and progression of cancer, as it is constitutively activated in 25—-100 % of
more than 25 different malignancies and has been implicated in nearly all the hall-
marks of cancer. In addition, STAT3 contributes to development and maintenance
of cancer stem cells, as well as to cancer immune evasion and resistance to chemo-
therapy and radiotherapy, making it an even more attractive target for cancer ther-
apy. In this chapter, we give an overview of strategies involved in targeting STAT3
and discuss recent advances in the development of STAT3 modulating agents.
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5.1 Introduction

Signal transducer and activator of transcription 3 (STAT3) is a member of a family of
seven proteins that are known to play important roles in growth factor and cytokine
signaling [1]. Canonical signal transduction by STAT3 is initiated by the recruitment
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of STAT3 to ligand activated membrane receptor complexes leading to a key
phosphorylation event on Y705, which in turn induces a configuration change leading
to tail-to-tail dimerization mediated by reciprocal SH2/pY705-peptide ligand interac-
tions [2, 3]. The active dimer accumulates in the nucleus, where it binds to promoters
and transcriptionally regulates a large number of target genes encoding proteins
involved in cell survival, cell cycle progression, homeostasis, and inflammation.

Under normal physiological conditions the phosphorylation status of STAT3 in the
cell is closely tied to receptor activation in response to extracellular stimuli, such that the
intensity and duration of the intended signal is tightly regulated. Regulation of STAT3 is
achieved by a number of elements that either act through negative feedback control on the
phosphorylation of STAT3 or deactivation by dedicated nuclear phosphatases.
Pathological conditions may arise in those instances where anomalies in the STAT3 sig-
naling cascade lead to constitutive activation [1]. Hyperphosphorylation of STAT3 has
been shown to occur through a variety of mechanisms, including, unregulated autocrine
and paracrine secretion of cytokines and growth hormones [4], expression of intrinsically
activated tyrosine kinases or receptors [5], or reduced levels of endogenous negative regu-
lators of STAT?3 signaling such as SOCS3, PIAS3, nuclear phosphatases [6, 7].

5.2 STAT3, The Oncogene

Dysregulated activation of STAT3 has been linked to the etiology and molecular
pathogenesis of many diseases, most prominently cancer [4, 8], where the STAT3
signaling pathway has been implicated in nearly all features of cancer biology [7],
including anti-apoptosis [9], cell transformation [8], growth and proliferation [2],
angiogenesis [10], metastasis [11], and cancer stem cell maintenance [12].
Accordingly, over-expression or constitutive activation of STAT3 frequently occurs
in a large number of both solid and hematological tumors (Table 5.1).

In addition to its established role in cell transformation and tumorigenesis,
STAT3 oncogenic signaling has been implicated in immune regulatory mechanisms
of multiple tumors [13]. For example, several studies showed that persistent activa-
tion of STAT3 leads to the suppression of anti-tumor immunity by promoting Treg
recruitment within the tumor microenvironment, while negatively regulating antitu-
mor Thl-mediated immune response [14, 15]. In addition, recent findings also
revealed that STAT3 plays a crucial role in tumor immune resistance, as constitutive
STAT3 activation has been shown to drive the expression of PD-L1, an immune
checkpoint ligand that mediates immune inhibition within the tumor microenviron-
ment [16]. Overall, it appears that STAT3 plays an important role in anti-tumor
immune response by up regulating immune inhibitors while at the same time sup-
pressing tumor immune activators.

From a therapeutic perspective, another significant aspect of STAT3 signaling
that also merits attention is its role in chemotherapy resistance. Despite initial clinical
responses to both targeted and cytotoxic cancer drugs, relapses are frequent and
drug resistance remains a major obstacle in curing cancer [17, 18]. Because STAT3
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signaling drives gene expression promoting cell growth and resistance to apoptosis,
persistent activation of STAT3 is thought to confer resistance to drug mediated
apoptosis [19]. Numerous studies show that hyper-activated STAT3 signaling plays
a significant role in chemotherapy resistance. Accordingly, the inhibition of acti-
vated STAT3 signaling appeared to sensitize resistant tumor cells to the cytotoxic
agents [20]. STAT3 is also emerging as a major contributor to adaptive resistance to
targeted drug therapy. Notably, it has been demonstrated that STAT3 activation via
a positive feedback mechanism underpins frequently observed drug resistance in
many oncogene addicted tumor cells. Similarly, inhibition of STAT3 reversed drug
resistance to RTK targeting. Taken together, these findings support targeting STAT3
to overcome resistance to cancer therapy [17, 21].

There is an overwhelming amount of clinical and preclinical data in solid and
hematological cancers supporting STAT3 as a pharmacological target, which has
prompted substantial efforts to develop STAT3 inhibitors. Currently, there are a
number of STAT3 inhibitors in clinical trials and many more in active development,
as will be discussed later in this chapter. Here we provide an update on efforts to
develop inhibitors of STAT3 to treat various cancers and will discuss the strategies
involved in targeting STAT3 and the advantages and pitfalls of each approach.

5.3 Strategies for STAT3 Inhibition

The STAT3 signaling cascade provides many opportunities to manipulate its activ-
ity, because each step in the activation process can serve as a potential target. In
order to pharmacologically modulate STAT3 activity, it is important to understand
how each step contributes to the transcriptional function of STAT?3, as this informa-
tion forms a basis for target identification and design of specific inhibitors (Fig. 5.1).

5.3.1 Structure and Biochemical Properties of STAT3

The initial steps in STAT?3 activation are triggered by tyrosine phosphorylation events
that drive key protein-protein interactions, which are necessary for signal transduction
from the plasma membrane to the nucleus [22]. STAT signaling initiated by peptide
hormones generally occurs through 3 types of receptors—receptor kinases, receptor-
linked kinases, or G—coupled receptors [23, 24]. Peptide ligand binding stimulates
cytoplasmic receptor-associated kinase activity leading to phosphorylation of recep-
tors at key tyrosine residues. Phosphorylated tyrosine residues on the receptors act as
anchors that recruit STAT3 proteins via their SH2 domains [25]. STAT3 is phosphory-
lated at Y705 and subsequently dimerizes in a tail-tail conformation.

Migration from the cytoplasm into the nucleus is required for STATS to transduce
signals and regulate gene expression in response to extracellular stimuli. It has been
noted that once dimerized in a tail-to-tail configuration, STATSs rapidly accumulate
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Fig. 5.1 Strategies for targeting STAT3 signaling. STAT3 signaling cascade is triggered by phos-
phorylation. (a) Upstream events including ligand binding, receptor activation or kinase activity can
be blocked to prevent STAT3 phosphorylation. (b) Blocking STAT3 recruitment onto receptors inhib-
its phosphorylation of STAT3 at Y705 and consequently SH2-SH2 dimerization. (c¢) Inhibitors that
disrupt the SH2-SH2 dimer block the transcriptional activity of STAT3. (d) Nuclear localization can
be blocked by targeting importins or importin binding sites on STAT3. (e) The DNA binding domain
can be targeted to inhibit STAT3 DNA binding, consequently transcriptional activity

in the nucleus. Though initially thought to be dependent on tail-to-tail dimerization
of STAT3, subsequent studies now suggest that STAT3 is constitutively shuttled
between the cytoplasm and nucleus independent of phosphorylation [26]. Studies
show that rather than a passive process dependent on diffusion, nuclear transloca-
tion of STAT3 is an active process. Indeed, the nuclear import and export of STAT3
as well as other STATs is facilitated by a group of proteins belonging to the karyo-
pherin-B family called importins [27]. Available data shows that importin a3, oS5,
a6, and o7 are involved in the nuclear translocation of STAT3. Importin &3 and a6
are linked to translocation of unphosphorylated STAT3 while a5 and o7 are required
for pY-STAT3 nuclear import [28]. All importins involved in STAT3 trafficking
appear to utilize a NLS located within the coiled-coiled domain of STAT3 [29, 30].
Once localized in the nucleus, STAT3 binds to specific DNA elements via its DNA
binding domain (DBD), whereby it engages the transcriptional machinery by
recruiting a number of coactivators and chromatin remodelers, such as cAMP
response element binding protein/p300 (CBP/p300) complex and steroid receptor
coactivator 1 [31, 32].
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5.3.2 Functional Domains of STAT3

STAT3 is composed of an N-terminal domain (NTD), a coiled-coil domain (CCD),
a DNA-binding domain (DBD), a linker domain (LD), an SH2 domain, and a
C-terminal domain. The structure of the core fragment of STAT3, which includes
the CCD, DBD, LD and SH2 showed that each domain of STAT3 has a distinct
function and is essential for the signal transduction and transcriptional activity of
STAT3 (Fig. 5.2).

STAT?3 has no enzymatic activity that would make it amenable to small-molecule
intervention; rather, its mode of action depends on protein-protein interactions (PPI)
and protein-DNA interactions. Thus, strategies for targeting STAT3 mainly rely on
the ability to disrupt these interactions. Although the prevailing dogma is that PPI
interfaces generally lack special topological features amenable to small molecule
inhibition, STAT3, nonetheless, has proven to be a compelling protein to target
using small molecules. The available X-ray crystallographic data of both the mono-
mer and dimerized STAT3 bound to DNA have been instrumental in revealing
physical chemical properties of phosphotyrosyl (pY) peptide binding, as well as
DNA recognition that have laid the foundation for the development of many STAT3
inhibitors by rational design.

5.3.3 Inhibitors Acting Upstream of STAT3 Activation

There is a strong correlation between the phosphorylation status of STAT3 at Y705
with tumor initiation and progression (Table 5.1), yet the reason for dysregulated
STAT?3 signaling is only rarely due to mutations in the signaling molecule itself.
Although the reason for abnormal STAT3 signaling in cancer is not fully under-
stood, most instances of hyper-phosphorylated STAT3 observed in cancer are medi-
ated by receptor tyrosine kinases (RTK), for example EGFR, or non-receptor
tyrosine kinases, such as JAK and SRC, more specifically, by unchecked intrinsic
tyrosine kinase activity of RTK, over expression of RTK, or persistent stimulation
of RTK or tyrosine kinase-associated receptors by cytokines and growth factors
[33-35]. As such, intense efforts have focused on inhibiting events upstream of
STAT?3 that drive STAT3 phosphorylation [36, 37].
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There are several therapeutic strategies used to block upstream activation of
STAT3, One involves targeting the tyrosine kinase enzymatic activity of specific
receptors or associated kinases using small molecule inhibitors of RTKs, JAK2
and SRC kinases. Another strategy involves disruption of protein-protein interac-
tions necessary for receptor mediated signal transmission across the plasma mem-
brane. The later strategy has been achieved in several ways including blocking
cytokine binding to the extracellular portions of the receptors, and disruption of
receptor oligomerization. These strategies primarily involve blocking cytokine or
growth factor activation of cognate receptors with the use of monoclonal antibody-
based inhibitors that target either the ligand or critical sites on extracellular portion
of receptors. Another strategy in this category involves the use of an aptamer, a
short peptide portion derived from a random peptide library integrated into the
thioredoxin scaffold protein, which specifically binds to the intracellular domain of
the EGF receptor blocking the recruitment of substrate to the receptor [38].

All the above approaches have shown success in targeting STAT3 activation
leading to induction of cancer cell death (Table 5.2) and have demonstrated signifi-
cant clinical efficacy. However, acquired resistance against tyrosine kinase inhibi-
tors remains a significant challenge [21, 39]. Besides, there have been inhibitors
(e.g. OPB-31121) that showed very low nanomolar level ICsys in pre-clinical set-
tings, but eventually failed to show efficacy in clinical trials. Moreover, due to the
pleiotropic nature of cytokines such as IL-6 there are always concerns of potential
toxicity due to off-target effects [40, 41]. Recent studies now provide a rationale for
direct targeting of STAT3 by itself or in combination with other therapeutic
approaches for combating drug resistance in cancer treatment [21, 42].

5.3.4 Inhibitors Targeting the STAT3 SH2 Domain

The SH2 domain presents a defined and well-characterized targeting site with suitable
topological features amenable to small molecule intervention and has proven to be
tractable for small molecule inhibition of STAT3. Additionally, the SH2 domain of
STATs have a dual function where they act as receptor recruitment modules as well
as dimerization domains necessary for high-affinity STAT DNA-binding. The SH2
domain has become the favored target for platforms geared towards rational design,
as well as in vitro and cell based screens for several reasons, including: (i) the
pY-peptide binding site provides a suitable druggable site for in silico docking
screens, (ii) pY705 phosphorylation is a convenient surrogate for STAT3 activation
making it amenable to very robust cell based high-throughput screening (HTS)
assays, and (iii) the SH2 domain binds short cognate pY-peptide ligands and, thus,
provides a platform for competitive inhibition bind assays such as SPR and fluores-
cence polarization that have routinely been used to directly screen for competitive
inhibitors of pY-peptide binding. The greatest effort at designing STAT3 inhibitors
has been directed at the SH2 domain, as summarized below (Table 5.3).



U. Bharadwaj et al.

104

NIAR{IE)'
1-0[eD/89%-dIN-VAN 6vSV
/6¥SV/EL €/SedH syuaned TTD | ‘89v-4IN-AN €LVLSd | 1D ‘dd ‘LN Joyquyur (v21-1SI)
[¥8¢€ ‘€8¢l dI‘PST ‘P/3Y/Bw [ | woxy s[[30 ‘T ¢'0[—6'C | 2AnMISU0d ‘N ¢'0/SL ‘WA ‘ad CIVLS/TAVL| WS| I umenqmon)
e
$)eI30UdX 91D 1€T-IN-VAN ‘€LvLSd pajenwns | 1O ‘dd LN Joyiqryur
[z8€-08¢] ‘DI ‘PL ‘PT/3N/Sw §/ST LIV W 9°1/€°1 o711 ‘M 521~ WA ‘Ad | €IVLS IS ‘TIVL | NS suLreuInsueg
SJRISOUIX [G[ €1 [qV-10g 7OdoH ‘c1vILsd | 1O ‘9 ‘LN Joyiqryur
[6L£-9L€] | urISISAI-INT ‘d] ‘P/3/Bu L 992N ‘M S0°0 | pavernuns-97[ ‘N 41> ‘WA ‘Ad CIVLS/IIVI| WS ugoueiny
sjeIsoudx 19-9920 ‘€IVLSd | LD ‘dd LN | S/€LvLSd suqryur
[SLe-1L€] IINO ‘Al ‘PT/3Y/3w 0§ 7OdaH WM ¢ 1-6°0 | 2AnmNsuod ‘M 58—~ ‘WA ‘Ad | ronquyur ¢/7VI | NS powndny
[oLe-s9¢ $)RISOURX $// THVAN 9/5/€/11v.LSd
TLT| ‘89P-dIN-VAN ‘SYINd SI[90 BWOdIES uonedo[suen | 10 ‘4d LN spqryut
‘69T ‘1] ‘DO BY/3w 06-0¢ Suimy ‘M ££°6-9¢°0 Jesponu ‘T 670 ‘WA ‘Ad | ronquui 7/ 1V | NS 08v1AzVv
s)jeISouax S[[92 L8N ‘€IVLISd | 1D ‘dd ‘IN Tonqrour
[+9¢] onT-£80 ‘dI “SY/Sw 001 rwojse[qor3 NN 7—1 2AnMIsuod ‘M ¢> ‘Wa ‘Ad CIVLS/TIVI| NS qruajyerog
Jodg-ddad 9/S/%/€/11V.LSd
Jodg-dDad paonpsuen | ILI9ATAVI ‘€IV.LSd | LD ‘dd ‘LN spquyur (0$5°069-dD)
[€9c-65¢] VN|  ~dLI9ATIVL ‘WA L0°0|  2anmnsuod ‘N 2070 ‘WA ‘ad aonqyur VL | NS qIuIIoRO],
A6vSV €1VILSd | 1O ‘9d ‘LN
[8s¢] VN 6vSV WH 0z< | 2anmnsuod ‘Wi 9701 ‘WA ‘ad Joyquyui e | NS V urfiadrg
€L6N ‘€IVLSd | LD ‘dd ‘LN lonquyur ¢1VIS
[Ls€ ‘9s¢] VN €LEN ‘M 50T~ | eanmnsuod ‘Wl 50z~ ‘N ‘Ad | YADH ‘D¥S ‘TAVI| S| PRV drjoues|o
89v-4IN-VAIN
syyeISoudx S[[90 I30UBD A +NAN cIvlsd poyernuns | 10 ‘dd ‘LN
[cse—¢s¢l [€FV dI ‘8¥/5w 08 /T4FH ‘T §'2-2°0 194 ‘U 001~ ‘WA ‘Ad | Jonquyur YL YIOH | NS seoestad
Joy | S[opouw [ewIIUL [BIIUI[O-dId S[[99 ‘uonIqIyuI (Kesse) syo01g uondrosaq | odA, sI03IqQIyu

1M0I3 [199 0SOI

uoniqryur ¢1vV.LS 0SOI

juowrdoroaap ur s1oyqryur weansdn ¢IVILS 'S dqeL



105

5 STAT3 Inhibitors in Cancer: A Comprehensive Update

(panunuoo)
1-ONVd
S[[e0 Ioued 1€ IN-VAN urewop ZHS €IV.LS
syeIsousx [¢Z-gIN-VANW wsearg N 09°0—11°0 ‘€IVLSd | 1D ‘g IN| 03 spulq Toyqryur
11+ ‘0171 dI ‘3y/3w oG | oneanued M $9°0—11°0 | ADMNSU0d ‘N ¢—¢'Z ‘WA ‘ad €IVLS ‘TAVIL| WS TETT
S)YRISOUSX JID-ALI9A THH ‘€IVLSd | 1O ‘dd ‘LN Joyqryur
(60t ‘80v] €d/ed ‘Od SY/Bw 001 | S[[e0 ewopAw N1 ¢~ | dAnMISu0d ‘W 56—~ ‘WA ‘ad €IVLS/TIAVI| WS 602101DL
[Lov S)JRISOUIX 97T TD S[1°0 TaH ‘W €T THH ‘¢1vLSd | LD ‘dd ‘IN Joyqryur
‘88T ‘1611 ‘I-D{eD ‘DO ‘BB O S[[O [-DED N 67 | 2Anmnsuod ‘N 57—1 ‘WA ‘ad €IVLS/TIAVI| WS 990TdM
sjjeIsoudx ST[99 IddUBD UO[0J/[RUDI
[eruBIORIUI [[9D S0 1-1yeD N 0§ ‘e ILvVLSd eanmmnsuod | 10 ‘g ‘LN
[90% ‘Sor] IIAYAOH DI ‘8y/Sw ¢ S92 ‘6ZLH T 0F ‘WM 001-0S ‘WA ‘ad eIVL| IS 067DV
[-0eD ‘e1visd
paonpur-erxod£y
‘W 0¢-S1 4dAVD AdAVD
sjyeIsoudax LD ‘dd LN Joyiqryur (vD)
[+0t—c0v] I-1eD dI ‘8y/Sw ¢ L-YnH ‘WM 506~ WM 001-0L :VD ‘WA ‘Ad | €LVLS ‘D¥S ‘TIVI| IS POV oroye)
S[[2 [-OAS LLIN ‘U €1
sjyeIsoudx S[[ed LD ‘dd | Jonquyur ¢ IVIS.LIY
(10t ‘00¥] [-OAS ‘dI ‘3/3w Q[ ‘I- 4D LLIN ‘U 8 | €IVLSd ¥00[q J0u ssoq ‘LN ‘Wa /19V/04S | NS quunese
0T EIWTDOH €-OSH 7OdoH ‘c1vILsd | 1O ‘9d ‘LN JToyqryur
[66¢] dI ‘3y/3w 0g—0z /maed ‘Wi 98¢ | 2Anmnsuod ‘Wl ;0667 ‘Wa ‘ad CIVLS/TIVI| NS urpowrg
SI[d QTTTH/SL6TH Ve ‘€Ivlsd | LD ‘dd LN JToyqryur
[86€-96€1 | SAUd/O1d ‘dI ‘3/Bw Z—| JOSOTH ‘WM ¢~1'T | oanmnsuod ‘Wil ;6'z~ ‘N ‘Ad | €LVLS ‘D¥S ‘TAVI| IS [onse[)
$1JeI50USX 89v-dIN-AN ‘€1VLSd | 1O ‘9d ‘LN Joyqryur
[S6c—¢o6¢] €0d "I BNBw ¢ | (£Dd ‘DIANH ‘U 01~ 2AnMNSuod ‘M 7| ‘Wa ‘ad €IVLS/TAVI| WS| d urenqmon)
796~ ‘I-ONVd
S)yeISoudX | S[[Q0 Iodued Jsealq ‘ODH ‘e IVISd eanmmsuod | 1O ‘g ‘IN J0)1qryur
[z6e—68¢] [-oued ‘[ ‘3y/3w | “eIUIRYNA U §*(~ T YSIy—JAU MO ‘Wa ‘xd CIVLS/ZIVI| NS | d sutoeiqmon)




U. Bharadwaj et al.

106

€AOMH
Xdd DTOSN ‘syeidoudx S[[99 0S9TH €1v.LSd pajeanoe | 10 ‘gq (LN | TOHAUULIVLS/AVL (qewrxmrg)
[bey €Tyl | 0S9TH ‘dI ‘PYE /5w 01 ‘Ky[IqeIA uo 103340 ON 9711 ‘N1 9°0-90°0 ‘Wa ‘ad IUMAVIN| qV 8TE-OLND
€IVLS 2oudy
sjjeIdoudx €odxg s[ed eDed ‘cIvLSd | IO ‘9dd ‘IN puB JUSUNIMNIOAL 9reuBAd0IY)OST
[z ‘s0¢] €0dxd ‘0d ‘W1 ¢1 ‘T-ONVd ‘N 01-8 | danmnsuod ‘Wil 0]—¢ ‘Wa ‘Ad D¥S suquup | NS [Azuog
IYHY/SHIYHA
JJeISouax BWOOILSOAWOPQRYT ‘eIvLSd aanmmsuod | 1O ‘dd ‘IN
[1zy] | TTLSINY ‘Od ‘33/3w (¢ ‘W1 6020 ‘W 8°0-T°0 ‘WA ‘ad Ionquyur 4404 | NS quupeuoq
1192 ¢1v.LSd €IVLS
[ozy ‘61+] ewouew ‘Wi €¢-7°0 pajeanoe-411 ‘Wi /onqryut O¥S | S 7dd
1€T-9N-VAN “SP1Nd
sjyeIsoudax $20S ‘99zN ‘€IvVLSd | LD ‘dd LN Joyqryur (dd) aprxorad
[81+]| sI1#2 992N dI ‘/5w 001 VN | eanmnsuod ‘W 718 ‘WA ‘Ad | €IVLS D¥S VI IS [01038031
NIEs)
$1JeI50UaX TAH ILIOATAVI-€ ID'dd IN (QrunorawoIA)
[L1¥°91%]| 1199 AHH ‘Od ‘S¥/Sw G| red Wi 61 VN ‘WA ‘ad lonqyu gIVe | NS L8ELAD
6vSV
6VSV | ‘8S0TV ‘89r-AIN-VAN
‘8S0TV ‘897~ AIN-VAN ‘SyINd ‘€IvLsd | LO ‘dd ‘LN I0)IqIyuT
[SIv]| ®wouew ‘Od ‘8y/3w 6T ‘SPINd ‘Wi 7| eanmnsuod ‘N ¢z ‘WA ‘Ad MV pue DYS| IS ¥8E€T-STIN
[[99 130UEd s[ed eDRd ‘€ IVLSd | 1O ‘9d ‘LN Joyiqryur
[v1v] VN | oneasoued ‘Wl 772-89°0 aanmnsuod ‘N 6—1 ‘Wa ‘Ad VL PUe OIS | NS 8¢/
00} uone[ndaidn
IdHS y3noy) spoe
s[[e0 ypng ‘N 7€' S[[99 | LD ‘dd ‘LN aoNqryur €IVLS
eIt ‘C1v] VN ‘S[199 997N ‘M 56 | 992N ‘€LVLSd WM 41~ ‘WA ‘ad pue ¢/z/IIVE| NS q uniay
Jo¥ | S[opou [ewiIuR [BOIUI[O-31d S[[90 ‘uoniqryur (Kesse) syoo1g uonduosoq | odAL, s10)IQIyU

[moI3 [199 0SOI

uonIqIyuI €IV.LS 0501

(PoNUNUOd) 'S AQEL



107

5 STAT3 Inhibitors in Cancer: A Comprehensive Update

oweyde gy ‘qy [RUO[OOUOW Gy ‘[BAUOILIdJ-eNUI J7 ‘(YInouwt £q) SO
1od 04 ‘[etueId-enul Hy Oseury auIsolk) y 7 ‘[eomses-enul Hy ‘uonduosuen auad 70 ‘Surpulq-yNJ g ‘UOIBIO[SURL Jed[ONU JA ‘UONRZIIWIP AT ‘SOL-IAL
je uoneroydsoyd ¢ TVIS Ad ‘o[nosjow [[ews jys ‘Apoquue qy ‘9[qe[IeAE JOU YA ‘90UaIdjar Surpuodsariod woij ‘uonIqIyul uo ejep 9Andiosap woiy pajewnso
7 SUOTIBIAQIQQY "PAsn [OPOW [ewIue pue (d[qe[IeA. JI) UONEINp ‘UOHENSIUIWPE JO ANOI ‘9SO JO ISISUOD S[OPOW [BWIUE [BIIUI[0-1d JOJ UOIRULIOJU] (210N

S)JRISOUdX [-DNVI S[[30 10UBd [-DNVd | LD ‘dd ‘LN
[6ct ‘8T¥] ‘PLT dI ‘B¥/Sw 6T onearoued ‘T 401~ | ‘€IVLSd ‘M 501-6~ ‘A ‘Ad Ionquyui Y40 | NS|  [ownyoyuex
s1oweyde Sunoerour
‘178889
LO ‘LN ‘dd | SPIO® OUIWE UIBWOp I
[8¢] VN VN VN NA ‘Ad | Tempeoenur YAOH | dV JEIAN/TIa
S)JeISoudX 1D°9d ‘IN
[L2y] | 1€V ‘dI “@o1w/3w ¢ 0-2°0 VN VN ‘WA ‘ad YIOH M QVIN | AV qeRUIXNIR)
sjjeISoudx S[[0 1D ‘dd ‘LN | Tonquul IVLS/AVI
9zt ‘STl 7odeH dI ‘Sy/3w (g ed/ed INU LT 0-60°0 VN ‘WA ‘Ad A9- T QVIN| QY QEWIZI[OQ],




S)JeISoudX 6VSV S[[99 IdUBD
89v-4IN-VAIN ‘89p-AIN-VAN ‘wonquyui-¢1vISd | IO ‘dd ALOdT+A-0V
[+ ‘€6l LI ‘NW S NAURITES VN Wiso-10| ‘WA Ad wouy padofoasp onowIN | JNd D€L INd
[€T-9N-VAN | dd ‘Surpuiq 89v-dIN-VAIN
‘89r-dIN-VAN €IVLS ‘cvisd | Io‘gd
[eev] VN ‘W TT11-9°¢ ‘WM $6°0 SN o1~ INa ‘Ad ALOd 1xA-0V woyy padofoasp Nd | INd €8¢1-1D
ugHN
VSINA Suipuiq -Odoueylouw-¢
HISU-€1V.LS 1D 0€1d3 jo douanbas -S1-1-(CHEOd)IAL
[2S ‘vl VN VN VN ‘WM ezIol ‘dd‘Nd Surpuiq 1vLS woiy apnded-d d|  -lAowruuroipdy
VSINH Surpuiq
HISU-€IV.LS 1D 0¢1d3 jo ouonbas
[zs ‘p¥l VN VN VN W ero| ‘9d ‘Wa Surpuiq ¢ VLS woyy spnded-d d ALOdT+X-9V
€2-D0S- NN
/ZOdoH “VSINA YADH Jo souanbas
Surpuiq ¢1V.LS Surpulq ¢1V.LS woyy HAW IV (syw-)apndad
parenuns YIOH | 1O ‘dd (ADANSAL/Ad+766A 29 JASONI roapopoydsoyq
el VN 1evV WM 052~ VN| /911 ‘W 0s.-0s€ | ‘N ‘Ad (ADIdAdT/d+8901 A sepndad-d d /dad
1t VSING
‘0t Kuojod 218A/¢ 1€ Surpuiq ISy 1D ajeozuaqouekd- £q 4
‘6t ‘St VN HIN ‘M 0001< VN -€IVLS ‘WM 2y | ‘dd ‘INa|  Suroejdar padofaasp sonowrwopndad | Nd 019 SSI
VSING Surpuiq
HISU-€1V.LS 1D uoniqIyul ¢IVIS
[sp] VN VN VN ‘WM 281 | ‘dd ‘INa| Joy parmbaropndad-d ¢1v LS rewrury d T« Ad
VSINA Surpuiq
Auoj0o 21GA/E1LE HISU-€IV.LS 1D (SOL-A Jo Kyturora)
[s+] VN HIN ‘M 00s< VN WM 6ET| ‘ddINA|  €LVLS woyy paanp spndadoydsoyd d|  (GW-)NINT«Ad
urewop HS €IVLS Sunosie) sioyqryuy
FEN S[opouw [ewiue S[[90 ‘uoniqryur (Surpuiq | (Aesse) uoniqryur syoo1g uondmosog | odAL, sI03IqQIyu
[eoruI-d1d | yMoI3 [[3D 06D | €LVILS) P €IV.LS 0SD1

owdo[oAdp Ul SIONQIYUI EIVLS 1091 €' AL



(panunuoo)

VSINA urpuiq 1Z-VLS PoplaIk
‘€0d ‘svind HISYU-CIVLS 1D ‘dd ASBIRJION|-¢ [VLS 10§ SUIUSaIOs
[€9-19] VN WM L81/TCT VN ‘WM 50602 | LN ‘A pue SUIUSAIOS [ENHIA PISLq-2IN)ONNG NS 1C-VLS
sjjeISoudx VSINA
1€C-9N-VAN Surpuiq g1Sy 1D dd onowrwopndad
[os]| ‘AT ‘83/8uw 0z—¢ WM 001~ VN -€IVIS ‘W 6L | ‘WA ‘Ad 019-SST woxy padofoaa| NS TO0TIN-TES
89t-dIN-VAIN
W 95//5T1 101
CTINV-IOO ‘urpuiq d: ‘Surpuiq soxordwos ¢ 1vIs—opndedoydsoyd
‘N 001/TT/EL deIvis ¢IvLS-dog1d3 jdnisip ‘sonowruurodjoid-gHS se €Tl
syInd SILT-Ad ALOdTAd 10| Sunoe soxordwoo surwe[Aoo1d—eIow soxodwoo raddoo
[09] VN ‘W 00T/TT/LL | T 0018 ‘WM 8ZT—ST | ‘dd ‘INd OIpIOE SIMOTT '8°0 s1opurq eydsoyd | A aurureAoordrcy
ANITAHTVASADSAAVAMSTdD
AVINHTVOHIAAADIISIAS ‘€-dd
ALNTVASOSIdAVOOVOAAAIDAd
ANTOSOADDANTASINMIMDA T-dd
SSAYdTIVISVAIHO TMOSVIDTA
RES) VSHAAIWTdOMSHIIDATAd ‘1-dd
‘4d ‘IN stoureyde Surpurq ($6/-669
[€91] VN VN VN VN ‘WA ‘A4 suonsod proe ourwe) qQ-€1V.LS dv cdd/caa/raa
odoH
‘cIviLsd (vd-¢SD
S)JeISoudX paje[nuuns 1D Joweyde opndad
879601 ‘PSI SauI[ [[90 I2oued -pues| ‘dd ‘LN uonouny ¢1VIS siqryut Kronquyur ¢1VLS
[65—-9¢] Al ‘Sy/Sw ¢/ snoteA ‘N g1 AU VN| ‘WA ‘4d PUE UTRWOP UOHBZLIDWIP SAZIUT00Y dv JUBUIQUIODSY
AdS
sjjeIsoudx ‘Surpuiq Jnow unenauad-[[9o
6VSV ¢IVLS 1D ‘dd pue opndad Surpuiq-¢ IVLS ©
[ss] ‘LI S/ g 6¥SV ‘W 0701 NU €T VN| ‘A ‘Ad| 01 poyoene pojgess raddiz ueydoydAry, | 4V A6 1AV




qdS

syyrISouax AdS ‘Surpuiq ¢IV.LS
1€T-GIN-VAN 1€2-GN-VAN ‘Burpuiq | Apndad-Ad ‘Wrieg 102-1€S
‘Al ‘[-oued €IVLS VSIWA 19 JO sISA[euR [BINIONIS ODI[IS UT (PIM
‘pLI “Aepg/aouo IG-A/CLEHIN | opnded-xd Surpuiq 1Sy | ‘dd ‘LN pauiquiod uonoerur ZHS—IALd auy 9901-4S
[+8 “¢8] ‘Sy/Sw ¢ T LE/8%/SE ‘Wi LT -€IVLS WM 6e | ‘A ‘Ad|  Jo Surepows Je[nosjow woiy paynsay | NS /9901°10T-1€S
sjjeIsouax
1€T-IN-VAN
‘Al VSINA 1D uonoesayur opndedx d-gHS jo [opowr
‘P91 “Aepg/aouo Surpuiq ISy | ‘g ‘LN| 1omdwod yim ssLrIqry [ed1udyd [ON 6S8YL
[z8 ‘18] ‘Sy/Sw g deONT ‘T 00€ VN -€IVLS ‘W98 | ‘WA ‘Ad JO SUIURQIOS [ENMIA PAseq aImOnNS | 'S DSN/10T-1€S
S[99 JduRd urewop
sjjeISoudx [easufreydoseN ZHS g1e1s 03
ordojoyiio W9 6—¢'t Surpuiq opndad-d urewop
dL1-0D0S-INN) S[[99 D ‘WIN peaLRp-0g1d3 | 1D ‘dd THS €1V.LS 0} SuIpuiq 10§ Uaa1ds
[9.-L] 0d ‘3¥/3w g O ‘WM 910 VN W g0FI'S| ‘WA ‘Ad| uoneziejod soudosaiony [H woy Ny | NS RISHAIN
‘cADS
‘TETN-VAN
‘M T°€-L6°0 S[[99 190UBD 1D
VSIS ‘TSOVS snoueA ‘€ IVLSd | ‘dd LN 0} SpIwreuoy[ns ypm ¢-17T1
[€2-69] ‘sozN ‘WM 8°0-€°0 VN ‘W 60°€-91°0| NG ‘Ad|  Jo dnoi3 [£jo0e Suroeider Aq paateq | NS T
SPINda ‘Wi €11 1192 VSIS
sjyeISouax /8 ‘€LEN ‘T1STN ‘VSINH Surpuiq
[sey [eIURIO-RUI ‘L8N ‘WM 0Z-01 HISU-€IVLS | 1D ‘dd
PEb ‘b9] ‘LI 33/3w g TOS/NT €9 VN ‘WM 500~ LN ‘N [T-VLS jo ondofeue eimonng | 'S ¢TIl
FEN S[opouw [ewirue S[[90 ‘uoniqryur (Sutpurq | (Aesse) uoniqryur syoorg uonduoseq | odAL sI0)IqQIyu
[eorur-d1d | yM0I3 [[3D 06D | €IVILS) P €IV.LS 0SD1

(PoNUNUOd) €°§ AQEL



(panunuoo)

Xaurwn-|
‘[-runsey|
syeISoudx g/ 1 ‘crvisd
-DOS-INN ‘dI pajenums-4$O-H
‘Pl By/5uw Og qdS ‘W 791 SUSRIDS
spopouwr XAd ‘TEC-AN-VAN ‘Surpurq dySnosy-y31y Jeylng pue urewop
JUBISISDIOWYD /897-dIN-VAIN €IVLS 4ds ‘Surpuiq 1O | THS €1VLS 21 Jo 3oy00d Surpuig-xd
[96 dI Pyl sisoydode | opnded-xd | ¢rvLsopnded-xd| ‘g ‘IN ) OJUT SANII[OW [[eWS 000 0T6
‘¥6 €6l BNBw el | ‘0sdd W 6'¢-L'0| NUELE T ‘Wi oz-¢'L| ‘N ‘Ad Sunpop Aq ‘SurusaIds puesi| [emliA | NS 8810
qds
‘Surpuiq
€IVLS VSING Surpuiq 1D SurtueaIds qe Jom juanbasqns pue
s1ooued | opnded-xd HISU-€IVLS |  ‘dd ‘LN | sionquyui ¢IVLS umouy yim siskfeue YEICE/TEITE-EA
[68] VN | snouea ‘Wi 08-T+| NN 21-8°0 Wi ¥8-L7| ‘INA ‘Ad aroydoorwreyd-qg pue 10O | NS -1€S
SPeISOUdX | G6TAS “DINELEN qds
[€T-IN-VAN | ‘DINLSN ‘“DINISTN ‘€IVLS
/1520 ‘0d ‘dO ‘[-oued ‘SHINA| 03 Surpuiq VSINA 1D
ByBwW g I0dI | ‘T€T DISA ‘YImoId 10911p SuIpulq HISY | ‘g LN|  SUONDUN IOWMN-NUE puE ¢V S-Nue
[c6l ‘PS1 ‘Sy/Swr g W eol-1'T| ‘W HTPM| -cIvLS ‘Wrle¢| ‘N ‘Ad Joj sonSofeue g0[-[-dd SUIURDS | S LO-SHS
S6TdS ‘DINELEN
‘DINLSN “DINISTN qdS
‘[-oued ‘SHINd ‘€T ‘CIVLS
018A ‘WM 9'6-6'T | 01 Surpuiq
SPeISoudx | JHLTI Pue JHHS jo0211p VSINA 19
€LLY ‘Od/dl|  ‘HEL HALY HAST| ‘T +T-€0 Surpuiq gISY| ‘g LN|  suonouny Jownj-ljue pue ¢JvIS-nue
[26 ‘161 | ‘PST “Sy/Sw Qf ‘W1 T0-L00 P3| -€IVIS ‘Wi Lv | ‘INa ‘Ad JIoy san3o[eue gO[-[-dd SUURS | NS ¥S-vHS
s)JeISoudx
6VSV 1€T REN
-dN-VAN ‘Surpurq
‘Od 10 Al eNIT ‘ShINd €IVLS VSINA 1D
‘pS1 ‘Kepg/aouo ‘89v-dIN-VAW |  opnded-xd Surpuiq HISY | ‘dd ‘LN SI0)IQIUUI-ZHS €IVLLS
[88 ‘L8] By/Sw ¢/] ‘WM L7601 WM EIT|  -€IVLS ‘NN 89|  ‘INQ ‘Ad | Sururejuod-proe oI[oLdI[es Jo Surudass | 'S 0L1/201-1-dd




[epowu asnouwr
G1ED orouaduAs
Sy/3w 00001
Q01w 9pnu %ﬁ>ﬁoa AseIJIdN|
ur S}eISoUsX 89v-dIN-VAIN juopuadop-¢ IVLS
89v-dIN-VAIN | uononpur sisoydode paonpul-INSO | LD ‘dd urewop gHS €IV.LS
l6L]|  ‘dI ‘338w g0z ‘W 02-01 VN ‘Wi or-¢| ‘Wa‘ad 211jud SUISN URIIS STA WO IH | NS 8D
S)JeISoudx “S[[99 JouRd
OS-WgD [eo130[0peWIaY
[t ‘€-00S ‘dI ‘YImoI3 aseroyon-¢IVLS | IO ‘dd SPOYIaW [BdIWSYI0Iq Y3NoIy)
-011] ‘PS ‘By/Sw O BAUKSI Al VN ‘W9 | LN ‘INd SurueaIos pue Sujoop OOIIS-U | NS 6110-XLS
S[90 1ddURD
JSBaIq ‘IddURD UO[0d
“TINV yimois 1D
[so1 AT 1°61-8°C aseroyIon-¢IVLS |  ‘dd ‘LN UQ2108 SSBISJION[-LV.LS LH Wim
-001] VN SSyINa ‘N L VN N9y N ‘Ad Are1qi] punodwod [eINjeu JO UdAIOS NS Juourysuejo}dAi)
xOEMESA
LSIN ‘[-Twmsey]
TNV Arewd ‘Surpuiq ‘cIvLsd
ur sisoydode -¢IVILS pojenuuns
‘0sad ‘WM 6Z-8°0| ‘WULYPM| -dSO-D W L¢
AdS
‘Supuiq 68810 PaYNUAPI
sjjeISoudx g/ [ LLIA ‘SI190 €IVLS AdS ‘Surpuiq 10 weisoxd pes[-0)-11y © Ul sIsA[eue
l1€g -DDS-INN dI DOSNH ‘ymois | opndad-xd | ¢rvisopndad-Ad| ‘gq‘IN aioydooeuwreyd ¢ pue ‘881D JO
‘86561 | ‘PrI ‘38w 001 ‘NN 8FI-L'0| ‘U T I ‘W 6T A ‘Ad|  projjeds Suisn Suruoards Ajreqiuis qz | NS 6-881D
REN| S[opouw [ewiue S[[99 ‘uoniqryur (Surpuiq |  (Aesse) uoniqryur syoo1g uondrosog | odAJ, sI03qQIyu[
[eoruI-a1d | WMoI3 [[3D 06D1 | €LV.LS) P €1V.LS 0SDI

(PONUNUOD)  €°G QEL



(panunuoo)

S[90
LLA 9TT-LOH ‘¢IvILsd 19
‘YPmoI3 ‘91 1-LOH AnmIsuod | ‘g ‘LN u9210s Juruonisodar
lezt] VN| W €er/101/L6 VN ‘AN 505-0T~|  ‘INd ‘Ad Snup pue QST Suisn qAdd | NS | QIX099[D ‘€L ‘TL
LLIN ‘ewo021esoA
wopqey! ‘DOH SI19
‘onearoued DDH ‘cIvLsd 10 a8pomoury
[121 ‘9seaIq ‘yimoid QATIMIISUOD ‘ad ‘IN 10JIQIYUI ¢ IVLS Umouy woij u3isap
—611] VN ‘AN 0561 VN ‘M 50T~ | ‘A Ad o[nosjou [ews Sunjorwiw opndad | S S-HZX
sjjeI3oudx ¢J,
€/018-
A6FSY
3y/3w ¢*( ‘oo1wu
(t/INATOT(nau 89t-AIN-AN
ALNINSL eIvisd ID| THS Sunedre Kqeqord jsour ‘soseury
1572 ~-N/dAd 891-AIN-AN 2AMINSU0d | ‘g ‘LN weansdn 1005 1, use0(T "¢ 1dS pue
‘S6¢] dI “33/3w og Kuooo ‘M 4¢—1 VN NPT WAAD|  LIDH 03 uaunimmar ¢/¢IVIS sdois | IS UnSTUSRIIIA
SIddued
% S6—6L SNOLIBA WOIJ
Aq 1owmy S[[99 9A+(QVS)
Jo uononpay RENAII (a1 () KJIAT)OR 9sBIQJION|
“201W apnu 2ATIppE Surpurq | juopuadop-¢ IVIS 1D
[8 | ursyerSouax [ -LVLS ‘0$01 €IVLS paonpur-NSO | ‘dd ‘IN 93U JNU MO[ UT KJTATIOR
—¢Lzl| ‘38w 00g—001 SSuBI NU MO |  JNUQI P ‘WM 01—¢ | ‘N ‘Ad | i Tonqryur urewop gHS udjod A1oA | NS 1211¢-9dO
qds
‘Surpuiq
sjyeISoudx LLIA ‘190 190ued apndad | xourwny ‘¢ 1v.I.Sd 10 uoneoo[sueI} IeI[ONU ¢IV.IS
891-dIN-VAIN isearq ‘mmors | -Xd-¢IVILS PoINpPUI-YOIIs | ‘dd ‘IN Jo xoyqryur 103 Arexqry Suruonisodar
[s11l| ‘pIT ‘Sy/Sw gy W90 ‘WUSIT| /9TI'INTLT-60, ‘INA ‘Ad © Jo udaros ndysnory ysStH | NS surwnguofradig




€0€TIH ‘152N

S)eISoudx ‘6S8NIT ‘TSND
[161| 971D ‘urea-[re) ‘09SVIAS ‘971D VSINA Surpuiq 1D dd
‘6t11 ‘Sy/Bwr ¢'g ‘M L€T-6'C VN YN ‘W1 ¢T| ‘WA ‘dd soxo[dwoo (A]) wnuned | NS L-VdO
(ot S¥1-n( stsoidode 1D Qouanbas urpulq-¢ VLS SnSuasuod gbas
‘LET] VN ‘U 0020 VN VN| ‘dd LN jo uonedyipow £053p 9pnos[onuosiio | NAO /VOIYET/0TPET
[Svv .
‘Y OHINAH ‘U LET (soy1s pajeoryjoroydsoyd sajousp .,
‘76T pue DHANH WU 8 € DeLsV«VVODDIVLL: L V4D S
‘orl sjyeIsoudx LLIN WA0I3 [[90 LO| SV .,€ D4 LV VLLODIDLL#L+V%D
‘cerl|  €8pI LIS 6T e8pl WM 461~ VN VN| ‘dd’IN ,6PsU_S | NAO NAO £od2sq
ddd €LVLS Sunasie) sioqryuy
(et sjjeI3oudx
—0py | Isealq ‘Oyeysoxd S[[99 DDSNH
‘Ll ‘ODSNH 9sealq ‘oreysoxd
54! ‘OTOSN ‘Surpuiq-yNd 1O urewop ZHS €¢IVILS | NdO
‘Y1l dI /8w f VN VN cIVIS Wi ‘ga‘ad 0] SpuIq 9p1od[ONUOSIo 12uENb-5 | -OD [€20VL/TITOPL
AOVd pue
‘OTyMN ‘1-88TMN
‘AT 84°0-2€0 S99 urewop ZHS-€IV.LS JO
[ocy LLA ‘4mo1s 1€C-dIN-VAIN 1O S0L3A1Ld 03 Kyorowr Surpuiq se 71 TTT
—LEY ‘Ta¥/socn ‘CIVLS pare[nuns | ‘gd LN Jo Juswey dprwesuoyd[ns- [ -auoIp
‘Letl VN N 6€°1-6°0 VN W' T-60~ | ‘WA ‘Ad -g‘g-ouoperpydeu Sunyut Ag ‘qadd| NS ¢k
S[90
LLN ‘yimoi3 1€C-dIN-VAIN
[oz1 syjeISoudx ‘S[[90 IoouBd ‘cIvIsd 10 s10J1QIyUI
4! 1€C-dIN-VAN onearoued pue aAnmnsuod | ‘gd ‘LN CIVLS 1930 pue oprureso[oru
‘6I1] | ‘Od ‘®/Bw og | 1searq ‘W T 1-1°0 VN W41~ ‘INa ‘Ad Jo aimonns uo paseq qAdd | NS €C10D0H
REN| S[opow [ewrue S[[92 ‘uonIqIyuI (Surpurq | (Aesse) uoniqryur syoorg uondiosoq | odAJ, sI031qIyu
[edrurd>-ald WPMOI3 [[9D 06D | €IVILS) P €LVLS 0601

(PONUNUOd) €°G AQEL



uoriu 12d syred wdd ‘opno

-9ronuo3g1jo Jauenb-n NqO-0 O ‘ewelde gy ‘onowrwopndad g ‘opndad 4 ‘qQy [BUOIOOUOIN GV ‘[BoU0ILIDd-BU] 4] “uonezirejod 9oudosatony 4. 93eAes [e10 DO ‘(yinow
£q) sQ 1d g ‘TerueId-enur Hy ‘oseury auIsoik) y ‘reomsed-enur Hy ‘uonduosuen suad 7o ‘Surpuiq-yNJ G ‘UOIROIO[SURT) JBI[oNU A ‘UOTIRZLIQWIP (T ‘SOL-IAL 18
uone[Atoydsoyd ¢ VIS Ad ‘Onosjout [[ews j§ ‘Apoqnue gy ‘9[qe[leA. J0U YA ‘9duaIojal Surpuodsaiiod woly ‘uoniquyul uo ejep 9ANdLIOSIp WOoIJ Pajewns? 7 :SUoneIAIqqy

pasn [opow [ewlIUe pue (J[qe[IeAR JI) UOIRIND ‘UONBNSIUTWIPE JO ANOI 9SO JO ISISUOD S[OPOW [BWIIUR [BIIUT[J-1 JOJ UOT)BULIOJU] 210N

[Lov
‘88¢ €2d ‘deDN'T 1D ‘dd XI[ay puod3s VIVH-€LS
‘161l VN ‘SyInd ‘3$°€-L°0 VN VN| ‘IN‘Nd| €IVLS W jo ssofeue dqeawrad [[2) | NS /URd-CIPH
AN €LVLS Sunasie) s103qryuy
IALANTVIVIAATITMAAVLTd
997N 10 :bas-d ‘roweyde
(€91 “g¢] VN ‘ZINU 696081 VN VN| ‘dd ‘Na Surpuiq (¢8y—¢z¢ ve) AAA-€IVLS |  dV | ¥6-1-add/1-add
mﬁmumoﬁﬁx VSINA
[291 onT-SH1-Nd | LLIA ‘WM0I3 [[0 ‘Sy1Nd 3urpuiq APS)
-091] dI ‘38w g SPI-Nd ‘WM #°¢ VN VNA 5T p~| ‘4 ‘INd | IeyIpow JudeA-0d dJjoqeiow [esung | NS Quojor[E[[oI[eD)
(8t L98¢-OH
Ly S)JeISoudx S[[90 Jooued ‘eIvLsd 10 dnoi3 (HON-) 2urjolAdAxoIpAy-N
.wm~ 08LCV .Uvow UeLIeAO pajeinua QATIMITISUOD .MHQ ..HZ 0] Auog3doeq AQ<Q noﬁowﬁomﬁm
=o¢1]| ur‘wddoor/06| 1-vOdd WM 6—¢ VN ‘Wi o> ‘Wa ‘Ad -[Kuspr[AreIp € Jo uonesnfuo) | S L98¢-OH
901w Apnu 66CIH ‘6VSV
ur S}yeIS0udX ‘TET-AN-VAN ase1aj1on] yS-gsut
67SV ‘op-gIN-VAIN juopuadap 1D ‘9a WO UONBZLId)ORIRYD JNISTURYOIUW
[os1] ‘DO By/Sw g W Lv-T¢ VN €IVIS ‘WM 11| ‘INd ‘dd pue uoneziundo 3y papms-ANARY | NS 8IVHS-gSut
66CIH ‘6SV
TET-AN-VAN
‘89-dIN-VAN) VSING Surpulq | 1O ‘dd €IVLS Jo
[s1] VN W v6-T°¢ VN VNA ‘WM 0z ‘INd ‘dd| agq o Suipuiq Iof Sutuaaios emiip | NS yS-gsur
€LEHIN aannadwos-uou
/01 UOTBULIO} VSING Surpulq | 19 ‘dd ‘108 ANSIAIP 00T IDN Woly
[6¥1] VN| £uojod) ; Wi 01> VN VNd ‘WM #1| ‘INd ‘dd paudards punodwiod (A]) wnuneld | NS S6T €SI




116 U. Bharadwaj et al.

5.3.4.1 Peptides and Peptidomimetics

Elucidation of the crystal structure of STAT33-STAT33-DNA complex [43] and sub-
sequent studies [25, 44—46] indicated that the SH2 domain facilitates binding to spe-
cific pY-peptide motifs within receptor complexes and mediates dimerization of two
STAT3 monomers via reciprocal interaction between the SH2 of one monomer and
pY-peptide motif, 2 AAPY*LKTKFI’", on the other. Strategies to target STAT3 by
identifying pY-peptide inhibitors of STAT3 SH2 binding to pY-peptide ligands have
been pursued by several groups (Table 5.3) [47]. Turkson et al. showed that pY-
peptides based on the sequence PY*LKTK surrounding Y705 within STAT3, inhib-
ited STAT3 DNA binding (IC5,=235 pM) and pulled down STAT3 from lysates of
unstimulated cells [45]. Alongside the usual limitations of the peptide approaches,
e.g. low cell permeability, instability, and the consequential low biological activities,
the requirement for the phosphorylation on Tyr for the inhibitory activity presented
another challenge to making this approach biologically useful. Covalently attaching
a membrane-translocating sequence (mts) of hydrophobic amino acids
(AAVLLPVLLAAP) to the C-terminus of the peptide improved membrane permea-
bility and PY*LKTKmts inhibited STAT3-mediated gene transcription and malig-
nant transformation, and induced apoptosis in v-Src-transformed NIH3T3 fibroblasts
albeit at 1 mM concentration [45, 48], underscoring the potential difficulty of con-
verting this approach into an effective therapeutic modality. The exploration of pep-
tidomimetic and phosphotyrosine (pY) mimic approaches led to the identification of
ISS 610, a peptidomimetic analog of the tripeptide, PY*L [49], the minimal peptide
from PY*LKTK that was required for STAT3 inhibition (ICs,=182 pM). PY*L
mimic, ISS 610, better disrupted STAT3 DNA-binding activity (IC5,=42 uM) [45,
49], and had increased STAT3 selectivity, (STAT1 ICs5,=310 pM; STATS
1C5,=285 uM) but still had weak intracellular inhibitory properties (ICso=1 mM),
due to poor membrane permeability. The abysmal intracellular performance of the
peptide forced the group to employ computational modeling to probe the binding of
ISS 610 to the STAT3 SH2 domain, which led to generation of the oxazole-based
small molecule S3I-M2001 having increased membrane permeability but similar
STAT3 DNA binding inhibition (IC5=79 uM), loss of specificity (STATI
1C5,=159 pM), but improved intracellular activity [50]. S3I-M2001 reduced pY-
STAT3 levels, DNA-binding, nuclear translocation, and transcriptional activity in
NIH3T3/v-Src fibroblasts and human breast carcinoma cells at 50-100 pM. Cell
growth inhibition ability was still weak (ICsy=100 pM), including inhibition of cell
growth, survival, and metastasis of NIH3T3/v-Src fibroblasts and human breast and
pancreatic carcinoma cells with increased pY-STAT3. But importantly, it showed a
significant regression of MDA-MB-231 xenografts at 5-20 mg/kg [50].

Another peptide-based approach used pY-peptides derived from STAT3 SH2
domain interacting growth factor or cytokine receptors, e.g. EGFR and gp130, to
block SH2-pY-peptide ligand interaction. Shao et al. showed that a phosphododeca-
peptide (PDP) based on the sequence surrounding Y1068 within the EGFR could
directly bind non-phosphorylated STAT3 and inhibit pY-STAT3 DNA binding,
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ligand-stimulated STAT3 activation, and TGFo/EGFR-mediated autocrine growth in
cancer cells [25]. Examining the structural basis for the specificity of STAT3-SH2 for
pYXXQ peptides revealed that only pY-peptides containing +3 Q (not L, M. E or R)
bound to wild-type STAT3-SH2 which required its K591 or R609 residues, whose
side-chains interact with the peptide pY, and E638, whose amide hydrogen bonds with
oxygen within the +3 Q side-chain when the peptide ligand assumes a p} turn [25, 51].

Another approach found gp130-derived STAT3-inhibitory pY-peptide Y*LPQTV
and several modified versions, including hydrocinnamoyl-Tyr (PO3 H2)-Leu-cis-
3,4-methanoPro-GIn-NHBn [44, 52], that showed potent inhibition of STAT3
DNA-binding activity (ICsy=0.15-0.29 pM). The peptidomimetic CJ-1383 devel-
oped from these, inhibited constitutive pY-STAT3 and inhibited growth of breast
cancer cell lines (IC5,=3.6—11.2 pM). PM-73G, another peptidomimetic developed
from Y*LPQTYV, also showed a low micromolar ICs, of pY-STAT3 reduction in
cancer cells, inhibited their growth, and blocked xenografts formation [53, 54].

The peptide aptamer APTgpars-9R, which has a tryptophan zipper scaffold
attached to a STAT3-binding peptide and a cell-penetrating motif, was screened
from a randomized peptide library [55]; it specifically interacted in SPR assays with
the STAT3 dimerization domain (K;=231 nM), reduced levels of pY-STAT3, DNA
binding, and transcriptional activity [55] and blocked the growth of A549 cells in
vitro (ICsg=10-20 puM) and in vivo. Another aptamer, the recombinant STAT3
inhibitory peptide aptamer (rS3-PA) also decreased pY-STAT3 levels, inhibited
growth of cancer cells in vitro, and reduced Tu9648 xenograft growth [56-59].
Although partly a peptide, these aptamers differ in their mode of action from pep-
tide inhibitors [47].

A phosphate binder, e.g. Lewis acidic metal-picolylamine complex, was shown
to act as a SH2-proteomimetic and disrupt pY-peptide—-STAT3 complexes and also
was potent in its anti-STAT3 activity (ICso=15-128 pM) as well it ability to inhibit
growth of various cancer cells (IC5y=11-100 pM) [60].

5.3.4.2 Small-Molecules

Despite having potent STAT3-inhibitory activity, peptides and peptidomimetics
continue to suffer the limitations of in vivo instability and poor membrane permea-
bility. Most of the peptides have not been tested in xenograft models and those that
were tried, with the exception of rS3-PA, had to be administered intratumorally
(IT), limiting their effective use in vivo [47]. Nevertheless, these studies provided
the proof of concept that the STAT3-SH2/pY-peptide interaction was amenable to
targeting and provided the impetus for many programs engaged in designing small
molecules for this purpose.

SH?2 inhibitors resulting from rational design or high-throughput screens. A
structure-based virtual screening of ~425,000 compounds from four different chem-
ical libraries followed by examination of 100 of the first 200 compounds in an in
vitro STAT3-luciferase assay identified STA-21, a deoxytetrangomycin, with potent
cell growth inhibitory activities (ICso=12.2/18.7 pM in DU145/PC3, respectively).
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Modeling studies suggested that STA-21 binds to the SH2 domain of STAT3 and
forms a number of hydrogen bonds with residues that form the pocket that binds the
pY residue, including Arg-595, Arg-609, and Ile-634, and thus inhibits STAT3
dimerization, nuclear translocation, DNA-binding, gene transcription, and inhibits
growth of breast and soft tissue sarcoma cell lines [61-63] with constitutively acti-
vated STAT3. Unexpectedly, STA-21 only minimally reduces levels of constitu-
tively phosphorylated STAT3. The group also identified Compound1, a derivative of
STA-21 [61], with similar STAT3 and cell growth inhibitory properties. Another
slightly more potent structural analogue LLL-3 had better cellular permeability than
STA-21 and inhibited growth of glioblastoma (IC5,=10-20 pM), prostate cancer
(ICs=11.3 pM), and CML cells (IC50=6.3 uM). Intratumoral injection of LLL-3
also inhibited intracranial glioblastoma xenografts in nude mice and increased their
survival [64]. The acetyl group of LLL-3 was then replaced with sulfonamide to
develop another STAT3 inhibitor, LLL-12 [65—73]. LLL-12 reduces pY-STAT3 lev-
els (IC5,=0.16-3.09 pM) and the growth of various cancer cell lines in vitro includ-
ing osteosarcoma cell lines U20s, SAOS2, and SISA (IC5,=0.3-0.8 pM,), breast
cancer cell lines MDA-MB-231 and SKBR3 (IC5,=0.97-3.1 pM,), pancreatic can-
cer cell lines HPAC and Panc-1 (IC5=0.16-0.29 pM), glioblastoma cell lines
US7MG and U373MG (IC5,=0.21-0.86 pM) and myeloma cell lines U266 and
ARH-77 (IC5=0.49—-1.9 pM), as well as their xenografts [66, 69, 70, 72].

Stattic (Stat three inhibitory compound) was another early small molecule STAT3
inhibitor discovered by high-throughput screening of chemical libraries [74]. Stattic
selectively inhibited STAT3 binding to pY-peptide (GY*LPQTYV; IC5=5.1 pM) and
blocked IL-6-induced STAT3 activation, nuclear accumulation, and DNA-binding
activity IC50=20 pM). It efficiently blocked the growth [74—76] of several cancer
cell lines with increased levels of pY-STAT3 (IC5=0.43-5.6 uM), as well as
UM-SCC-17B orthotopic xenografts [76]. Stattic was used as an adjuvant to sensitize
radioresistant esophageal squamous cell carcinoma (ESCC) cells and xenografts to
radiation [77], and to sensitize ovarian cancer cells to cisplatin [78]. A structure-activ-
ity relationship (SAR) analysis revealed that saturation of the vinyl sulfone leads to
loss in activity. In addition, the presence of 2 mM dithiothreitol (DTT), a nucleophile
donor, abrogated STAT3 inhibitory activity of Stattic, suggesting the nucleophilic
attack of the sulphonic double bond by a cysteine in the STAT3 SH2 domain [74].
Recently, MS-based studies using high quantities of Stattic (800 pM; 10 uM of pY-
STAT3) suggested that eight molecules of Stattic bind to one pY-STAT3 scaffold and
identified Cys468 as one possible alkylation site [79]. However, a more recent paper
[75] reported covalent binding of nine Stattic molecules to one unphosphorylated core
STAT3 protein molecule at a lower concentration (50 pM/10 pM STAT3). Four or five
of the nine covalently-modified residues are cysteines, but Cys468 and Cys542 were
not among these [75]. A recent report by Sanseverino et al. indicated that Stattic tar-
gets other STAT proteins, including STAT1 and STATS [80].

Another STAT3 inhibitor resulting from structure-based high-throughput vir-
tual screening of the National Cancer Institute (NCI) chemical libraries was
S3I-201/NSC74859. In modeling studies, S3I-201 docked to the pTyr binding
site of STAT3-SH2 domain through its salicylic acid moiety, inhibited STAT3
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DNA-binding (ICs, = 86 pM), and inhibited proliferation of several cancer cell
lines, including hepatocellular carcinoma, breast cancer, and prostate cancer
albeit with high ICs,s (100-300 pM) [81, 82]. However, it successfully inhibited
growth of MDA-MB-231 xenografts at a dose of 5 mg/kg [82]. Genetic
Optimization for Ligand Docking (GOLD) studies suggested suboptimal inter-
action between S31-201 and STAT3. To improve this interaction, several mole-
cules were subsequently developed [83, 84], many of which showed higher
potency in STAT3 DNA binding inhibition assays (ICs,=18.7-51.9 pM) and
disruption of STAT3—pY-peptide interactions (Ki=15.5-41 pM). S31-201.1066
(or SF-1066) was the most potent in this series; it was demonstrated to directly
bind STAT3 (Ky4=2.7 pM) and to inhibit growth of multiple cancer cell lines
with greater potency than S31-201 (ICs,=35-48 pM) [85, 86]. Sixteen novel
sulfonamide analogues of SF-1066 were subsequently characterized; of these,
BP-1-102 [87, 88] effectively inhibited STAT3 DNA binding (ICs5,=6.8 pM),
which was a 5-fold improvement over SF-1066 [83, 84], resulting in better cell
growth inhibition (IC5,=10.9-22.7 pM). BP-1-102 was orally bioavailable and
effectively limited growth of STAT3-dependent tumor xenografts [88]. Known
STAT3 dimerization-disrupting small-molecules, including S3I-201, were then
subjected to GOLD analysis and a 3D quantitative structure-activity relation-
ship (QSAR) pharmacophore model adopted to predict optimized STAT3 inhib-
itors. This analysis identified 2,6,9-trisubstituted purine scaffolds [89] as a
promising choice of structural scaffold for projecting functionality into the
three corners of the most important SH2-domain subpocket A, which contains
the key pTyr705-binding residues and is composed of the polar residues Lys591,
Ser611, Ser613 and Arg609 [90]. Select purine scaffolds, e.g. S31-V3-31, S3I-
V3-32, S31-V3-33, S3I-V3-34, and S3I-V4-01, showed good affinities (Kb,
0.8 12 pM) for purified, non-phosphorylated STAT3, inhibited STAT3 DNA-
binding (ICs,=27 — 84 pM) and intracellular phosphorylation (ICs5y=20 — 60 pM)
and suppressed growth of transformed cells (ICs5,=41-80 pM) with increased
constitutive STAT3 activity [89]. Recently, another S3I-201 analog, S31-1757,
was described that was capable of inhibiting STAT3-pYpeptide binding
(IC5p=13 pM); however, it had only modest potency for decreasing levels of
nuclear pY-STAT3 and STAT3-DNA binding (ICs, > 50 pM) [86].

A library of BP-1-102 analogues containing prodrugs, potential bioisosterses,
and salicylic acid mimics was screened for anti-STAT3 and blood-brain barrier per-
meability properties, which identified 4 inhibitors —SH4-54, SH5-07, SH5-19, and
SH5-23. Each had nanomolar ICsys for inhibiting STAT3 binding to pY-peptide
[91]. Of these, SH4-54, in which the hydroxyl substituent of the salicyclic acid
moiety of BP-1-102 was removed and replaced with hydrogen [91], bound most
strongly to STAT3 (Kp =300 nM). SH4-54 also reduced levels of pY-STAT3 and its
downstream transcriptional targets at low nM concentrations and potently targeted
glioblastoma brain cancer stem cells (ICso=0.07-0.2 pM). SH-4-54 crossed the
blood-brain barrier, reduced pY-STAT?3 levels, and controlled glioma tumor growth
in vivo. In a more recent study, SH4-54 and SH5-07 were tested in gliomas and
breast cancer cells [92]. They were found to have increased ability to inhibit STAT3
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DNA binding activity compared to BP-1-102 (ICs5y=3.9 and 4.7 pM, respectively)
and inhibited DNA-binding in cells at 1-3 pM; however, their ability to reduce lev-
els of pY-STAT3 in cells was much less pronounced (significant reduction not
observed below 10 pM) and did not correlate with the ability to block DNA-binding
and/or STAT3-regulated gene expression. This lack of correlation within the context
of constitutively-active STAT3 was explained by suggesting that disruption of pre-
existing STAT3:STAT3 dimers, which directly leads to lower DNA-binding activity,
has a non-linear relationship with the turnover of disrupted pY-STAT3 molecules
and by suggesting that SH4-54 and SH5-07 could act by binding directly to the
STAT3 DBD [92]. In fact NMR data showed that these compounds bind to both
SH2 domain and DBD of STAT3, in the later case, most probably to a hydrophobic
pocket formed by residues Leu411, [1e386, and I1e439 [92].

Using computer-based ligand screening, our group docked 920,000 compounds
from 8 chemical libraries into the p-Y-peptide pocket within the STAT3 SH2 domain
and identified three hits, C3, C30, and C188 [93]. C188 demonstrated the greatest
activity of the three [93-95] and inhibited STAT3-pY-peptide binding in an SPR-
based assay (ICs5o=7.5-20 pM; calculated K;=37.3 nM), inhibited G-CSF-
stimulated increased pY-STAT3 levels in Kasumi-1 cells (ICs,=16.2 pM) and
induced apoptosis in pY-STAT3-high breast cancer cells (EDsy=0.7-3.9 uM) [93,
94, 96]. Hit-to-lead strategies focused on C188 [93-96] led to C188-9, which dem-
onstrated improved potency and was non-toxic and orally bioavailable [95-98].
C188-9 binds to STAT3 with high affinity (Kp=4.7+0.4 nM) in microscale thermo-
phoresis assays and potently inhibited STAT3 binding to its pY-peptide ligand
(ICs=2.5 pM, SPR; K;=12.4 nM), inhibited G-CSF-stimulated increased pY-
STAT3 levels (ICsp=3.7 pM), and reduced constitutive pY-STAT3 levels
(ICsp~4 nM) in A549 cells [99].

Shin et al. searched a library of natural compounds using a STAT3-luciferase assay
and identified Cryptotanshinone as a STAT3 inhibitor. Cryptotanshinone is derived
from the roots of Salvia miltiorrhiza, known as Bunge or Danshen. Cryptotanshinone
reduced levels of pY-STAT3 in HCT 116 colon cancer cells (ICsp=4.6 pM) and in
breast, prostate, and cervical cancer cell lines [100]. Cryptotanshinone inhibited
growth of multiple cancer cell lines, including myeloma, glioma, NSCLC, colorectal,
and pancreas (ICs5p=5.8—15.1 pM) and induced cancer cell apoptosis [100-105]. It
was also found to synergize with various drugs, including imatinib and cisplatin in
several cancers [103, 106—109]. Binding studies suggested that cryptotanshinone
directly interacted with the STAT3 SH2 domain of STAT3 to inhibit STAT3 phospho-
tyrosylation and prevent STAT3 dimerization and nuclear translocation [100].

Matsuno et al. [110] identified a N-[2-(1,3,4-oxadiazolyl)]-4 quinolinecarbox-
amide derivative, STX-0119, as a novel STAT3 dimerization inhibitor by virtual
screening using a customized version of the DOCK4 program and the STAT3
crystal structure. The top 136 hits identified were examined in a STAT3-dependent
luciferase reporter gene assay and a fluorescence resonance energy transfer-based
STAT3 dimerization assay. STX-0119 inhibited STAT3-reporter activity
(IC50=74 pM), downregulated STAT3-regulated genes, and inhibited growth of
multiple hematological cancers (ICso=1.4-18.3 pM), as well as glioblastoma cell
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lines (IC50=6.6-44.5 pM) but did not affect STAT3 phosphorylation [110-113]. A
docking model of STX-0119 [110] bound to the STAT3-SH2 domain revealed that
the 2-Ph ring of STX-0119 inserted into a hydrophobic cleft in proximity to the
pY-peptide binding pocket. Oral administration of STX-0119 effectively abro-
gated the growth of human lymphoma and glioblastoma xenografts [112, 113].

In another program, 437 of 7000 compounds that docked to a region of a STAT3
distinct from STAT1 in a previous molecular dynamics simulation [114] were fur-
ther screened on the basis of favorable binding parameters involving ligand buried
surface area (>75 %), and van der Waals and hydrogen bond energies. This resulted
in identification of 52 compounds that were tested for the ability to block STAT3
DNA binding by EMSA [79]. Of these 52 compounds, C36 was identified as the
most potent hit (IC5,=30-50 pM). Subsequent library-screening using C36 as a
template yielded another 48 structurally similar compounds. After further screening
for STAT3 DNA binding inhibition and elimination of some leads because of low
solubility, C48 emerged as the lead (ICso=10-50 pM); it reduced constitutive pY-
STAT3 levels, DNA binding, and transcription of STAT3 gene targets in breast can-
cer cells leading to growth inhibition and apoptosis of C3L5 murine breast cancer
tumors in a syngeneic mouse model [79]. Site-directed mutagenesis and multiple
biochemical experiments showed that C48 is a covalent modifier of STAT3 and
alkylates Cys468, a residue at the DNA-binding interface.

Our group used a high-throughput fluorescence microscopy search to identify
compounds in a drug-repositioning library (Prestwick library) that block ligand-
induced nuclear translocation of STAT3 and identified piperlongumine (PL), a natu-
ral product isolated from the fruit of the pepper Piper longum [115]. PL inhibited
STAT3 nuclear translocation (IC5=0.9-1.7 pM), inhibited ligand-induced
(IC5=0.9-2.7 pM) and constitutive (IC5y=0.4-2.8 puM) STAT3 phosphotyrosyl-
ation, and modulated STAT3-regulated genes. SPR revealed that PL directly inhib-
ited binding of STAT3 to its pY-peptide ligand (Ki 68nM). PL inhibited
anchorage-independent growth of multiple breast cancer cell lines with increased
levels of pY-STAT3 or total STAT3 (IC5,=0.9-1.7 puM), and induced apoptosis. PL
also inhibited mammosphere formation by cancer cells in patient-derived xeno-
grafts (PDX) and its anti-cancer activity was linked to its STAT3-inhibiting activity.
PL was non-toxic in mice up to a dose of 30 mg/kg/day for 14 days and blocked
growth of breast cancer cell line xenografts in nude mice.

SH?2 inhibitors identified using fragment-based drug design (FBDD). Most of the
above molecules resulted from high-throughput screens (HTS) based on rational
design followed by lead optimization. Using biophysical methods like NMR and
X-ray crystallography, fragment-based drug design (FBDD) has recently emerged
as a successful alternative to HTS-based drug discovery [116-118]. Several groups
have combined structural motifs of reported STAT3 inhibitors as part of a fragment-
based drug design (FBDD) program to develop more potent STAT3 inhibitors.
These and other FBDD STAT?3 inhibitor programs are described below.

The intention of one such program was to design peptidomimetics that would bind
to the pTyr705-binding site and a side pocket within the STAT3 SH2 domain. A urea
linker was used to form H-bonds with residues between the two sites, which are rich in
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H-bond acceptors and donors. Ten compounds were designed and XZH-5 emerged as
the most promising. The features of XZH-5 were: (i) a carboxylate group that mimics
the pTyr705 phosphate group; (ii) a fluorobenzene group able to form hydrophobic
interactions with the side pocket; and (iii) a combination of urea and peptidyl linkers
that spanned the right distance and were capable of forming H-bonds. XZH-5 was
shown in a docking model to bind to the SH2 domain of STAT3 and prevent STAT3
phosphorylation at Tyr705, leading to inhibition of downstream STAT3 activities and
apoptosis in multiple cancer cell lines including breast, pancreatic, hepatocellular and
rhabdomyosarcoma (ICsy~ 15-50 pM) [119-121].

Li et al. used a novel approach combining Multiple Ligand Simultaneous
Docking (MLSD), drug scaffolds, and drug repositioning to find potent STAT3
inhibitors. Briefly, their approach consisted of: (i) building a small library of drug
scaffolds for the binding hot spots within the STAT3 SH2 domain; (ii) MLSD
screening of privileged drug scaffolds to identify optimal fragment combinations;
(iii) linking of the fragment hits to generate possible hit compounds as templates;
and (iv) similarity searches of template compounds in drug databases [122] to iden-
tify existing drugs as possible inhibitors of STAT3. The above process successfully
identified two synthetic compounds T2 and T3 and the repositioning search yielded
celecoxib. Each reduced the growth of HCT-116 (ICs5,=9.0, 10.1 or 43.3 pM,
respectively). Further lead optimization produced 5 analogues [123] that were more
potent in inhibiting cancer cell line growth (IC5,=6.5 pM for a breast cancer cell
line; 7.6 uM for pancreatic cancer cell lines).

Niclosamide, an FDA-approved anticestodal drug with a very low bioavailability
in humans, was identified to inhibit STAT3 activation, nuclear translocation and
transactivation [124]. FBDD based on the structure of niclosamide and other STAT3
inhibitors yielded a series of orally bioavailable STAT3 inhibitors including
HJCO0152 and HJCO0123 [125, 126]. HIC0123 inhibited STAT3 activation and pro-
moter activity, growth of breast and pancreatic cancer cell lines in vitro ICs,=0.1-
1.2 pM) and MDA-MB-231 xenografts [125] and also potentiated doxorubicin- and
gemcitabine-mediated killing [119].

More recently Yu et al. developed another STAT3 dimerization inhibitor by uti-
lizing FBDD. They linked the naphthalene-5,8-dione- 1-sulphoneamide fragment of
LLL-12 (thought to bind to the pTyr705-binding pocket within the STAT3 SH2
domain) to a dimethyl amine that contained various R groups and generated 5 dif-
ferent compounds. LY, the most potent compound, inhibited growth of U20S and
RD2 cancer cells (IC5,=0.5-1.39 pM) better than parent compound LLL-12; it also
was easy to synthesize and possessed more drug-like properties than LLL-12 [127].

5.3.5 Inhibitors Targeting the STAT3 DNA-Binding
Domain (DBD)

Recognition of specific DNA elements is one of the cardinal features of transcrip-
tion factors (TFs). The DBD of STAT3 is known to bind two types of DNA elements
within promoter sites to mediate its transcriptional activities—serum-inducible
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elements (SIE) and gamma-activated sequences (GAS) [22, 128]. Concerted efforts
at blocking this interaction have been underway for some time. The following sec-
tions describe these efforts (Table 5.3).

5.3.5.1 Decoy Oligonucleotides

Decoy oligonucleotides are double-stranded or duplex DNAs that mimic TF pro-
moter elements. Their use was first described by Bielinska et al. in 1990 as a way of
modulating gene transcriptional activity in the cell [129]. Duplex ODNs act by com-
petitively inhibiting TF binding to their endogenous promoter elements. This strat-
egy has been used to target aberrant TF signaling in various diseases and currently
represents an active area of research [130, 131]. Following successful demonstration
of STAT6 inhibition using this method [132], Leong et al. reported the use of a
15-mer duplex ODN modeled on the c-fos promoter sequence (SIE) to target STAT3
[133]. They demonstrated reduction in STAT3 mediated gene expression that led to
growth inhibition of head and neck cancer cells. Other researchers also have shown
similar results with other STAT3-associated cancers including, ovarian cancer, gli-
oma, prostate cancer and hepatocellular carcinoma. [134-138]. Although duplex
ODNs appeared to have minimal toxicity in primate models [139], instability in
plasma was a limitation to their in vivo efficacy. To overcome these limitations, the
Grandis lab developed a cyclic STAT3 decoy ODN linked to hexa—ethylene glycol.
This ODN showed improved stability and retained antitumor efficacy with minimal
toxicity when administered intravenously in a preclinical head and neck cancer mod-
els [140]. Creating a peptide nucleic acid (PNA) by adding a novel cell-penetrating
peptide (CPP) consisting of a glutamate peptide linked to the N-terminus of the
nuclear localization signal (NLS) from Oct6 transcription factor, to the minimal
15-mer linear ODN 13410A (Glu-Oct6-13410A) required for inducing cell apoptosis
[137, 141] showed better cell-uptake and better apoptosis inducing capacity [141].

5.3.5.2 G-Quartet Oligonucleotides

G-quartet oligonucleotides (GQ-ODN) constitute another approach that is mechanis-
tically analogous to ODNSs in inhibiting the transcriptional activity of STAT3.
G-quartets oligonucleotides are random coils outside the cell that complex with K*
ions within the cell form stable box-like structures composed of stacks of 4 G-bases
that are hydrogen bonded via hoogensteen pairings [142]. These structures are nor-
mally found in telomeres and promoter regions of many genes. G-Quartets are known
to associate with DNA binding proteins [143], thus, making them ideal candidates to
be used for targeting DNA binding activity of TFs. In 2003, Jing et al. developed a
GQ-ODN, that inhibited IL-6 induced DNA binding activity of STAT3 and suppressed
expression of STAT3 mediated genes [144]. Subsequent work showed that GQ-ODNs
inhibited proliferation in a wide variety of tumor cell lines, including prostrate, breast,
head and neck, non-small cell lung cancer, and T-cell leukemia with ICsys ranging
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from 5 to 7 pM [145, 146]. Although initial studies predicted that GQ-ODN
destabilized dimer formation, the mechanism by which GQ-ODN disrupt and abro-
gate STAT3 activity remains unclear since subsequent work appeared to show that the
GQ-ODN inhibited STAT3 transcriptional activity by preferentially binding to its
DNA binding domain rather than the SH2 domain [147]. Nevertheless, it is clear that
they show promise as targeted anti-cancer agents. GQ-ODN have not garnered as
much interest as small molecules, perhaps due not having properties suitable for sys-
temic delivery. However, this may change as novel nucleic acid delivery systems cur-
rently being developed based upon siRNA therapeutics are employed [148].

5.3.5.3 Platinum-Based Inhibitors

The antitumor effects of most platinum compounds are thought to result from their
ability to combine with DNA and form complexes that are toxic to cells. In contrast,
platinum IV compounds—CPA-1, CPA-7, and platinum (IV) tetra-chloride, were
shown to inhibit STAT3 DNA binding activity in an EMSA assay [149]. Importantly,
IS3 295, a member of the same group identified from a screen of the NCI 2000
diversity set of compounds, was reported to bind STAT3 and prevent its interaction
with specific DNA response elements in a dose dependent manner with an ICs, of
1.4 pM [150]. All platinum IV compounds mentioned here preferentially inhibit
STAT3 and to some extend STAT1 DNA binding, but showed no activity against
STATS DNA binding, reducing the possibility that this is a nonspecific DNA target-
ing effect. The compound suppressed STAT3 dependent gene activation and showed
antiproliferative effects against v-Src transformed fibroblast and a variety of breast
cancer cells. Of note, CPA-7 also was recently shown to be effective against both
gliomas and melanomas in mouse tumor models [151]. Biochemical data also sug-
gests that inhibition of DNA binding by IS3 295 is irreversible, which is not surpris-
ing because platinum compounds are known to react with thiol groups [152]. The
fact that IS3 295 is selective for STAT3 over STATS suggests that covalent modifi-
cation involves a unique site within STAT3 to which the compounds first binds
non-covalently prior to crosslinking. It is important to note that this kind of selectiv-
ity implies a “hotspot” within the DNA binding domain [153]. It would therefore be
interesting to pinpoint the reactive thiol groups at the DNA interface. This could
yield important information that would help drive the development of other com-
pounds directed at STAT3 DNA binding. It remains to be seen what proteins other
than STAT3 this class of compounds also targets in order to better assess the possi-
bility of unacceptable levels of off-target effects.

5.3.5.4 Small Molecule Targeting

In contrast to the SH2 binding domain, which presents a well-defined pY binding
site that is amenable to targeted small-molecule inhibition, the DNA binding
domain has historically been considered challenging, partly due to the belief that
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disrupting DNA binding would not achieve the desired level of selectivity neces-
sary to discriminate among TFs. In addition, protein DNA interactions of TFs were
conventionally deemed undruggable due to the lack of obvious targetable pockets
within their binding interfaces. Using high quality structural data of the DBD of
STAT3 [43], Huang et al. applied an improved virtual ligand screen to identify a
small molecule called InS3-54 (4-[(3E)-3-[(4-nitrophenyl)-methylidene]-2-oxo0-5-
phenylpyrrol-1-yl] benzoic acid) that non-covalently binds to the DBD of STAT3,
thereby competitively inhibiting its DNA-binding activity [154]. To ensure selec-
tivity towards STAT3, top scoring molecules from the initial screen were docked
on to the DBD of STAT1. InS3-54 was selected as the most selective compounds
that had the ability to inhibit STAT3 dependent gene expression in a luciferase
reporter assay. In addition, InS3-54 was demonstrated to inhibit DNA binding of
pY-STAT3 dimer (ICs5o=20 pM) by non-covalently binding to the DBD of STAT3.
Although efficacious in inhibiting proliferation of various cancer cell lines, the
1Csy (<6 pM) was markedly lower than that for its inhibition of DNA binding,
which suggested the possibility of off-target effects. To address this issue, Zhan’s
group made further activity guided hit-to-lead optimizations that resulted in InS3-
54A18, a compound that showed improved ICs, for growth inhibition, better speci-
ficity, and more favorable pharmacological properties [155]. When orally
administered, inS3-54A18 effectively inhibited STAT3 activity in mice leading to
a reduction in lung xenograft tumor growth.

Another example of a small molecule presumed to work by the directly targeting
the STAT3 DBD is a synthetic analog of curcumin, HO-3867, that has been shown
to inhibit DNA binding activity in an ELISA assay [156]. HO-3867 inhibited STAT3
transcriptional activity, was preferentially active in a dose dependent manner in
inhibiting growth of cancer vs. normal cell lines, and inhibited xenograft tumor
growth. However, this compound appears to have minimal selectivity and was
shown to inhibit upstream kinases [157, 158]. To advance further, the specificity of
HO-3867 likely will need to be improved.

Galiellalactone, a fungal metabolite from the ascomycete, Galiella rufa, inhib-
ited the IL-6/STAT3 signaling pathway [159, 160]. Galiellalactone inhibited STAT3-
mediated luciferase induction (ICso~5 pM), reduced STAT3-regulated gene
induction, and blocked the growth of various cancer cell lines e.g. DU145, in vitro
(IC5p=3.4 pM) and in vivo [160-162]. Galiellalactone did not prevent dimerization
of the STAT3 monomers and showed no significant inhibition of phosphorylation; it
appears to mediate its STAT3 inhibitory effect by covalently modifying residues
Cys-367, Cys-468, and Cys-542 in the DBD and directly blocking the binding of
STAT3 to DNA [162].

5.3.5.5 Peptides and Aptamers
Like STAT3 SH2-directed aptamers, DBD-directed peptide aptamer DBD-1 and its

protein transduction domain (PTD)-fused analog, DBD-1-9R could also target
STAT3 and reduce growth of STAT3-dependent cells [163].
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5.3.6 Inhibitors Targeting the STAT3 N-Terminal Domain

Although tyrosine phosphorylation precedes STAT3 activation, it has been shown that
even nonphosphorylated STAT3 contributes to carcinogenesis through regulation of
gene expression [164—166]. In addition, protein—protein interactions between STAT3
and other transcription factors also can affect the repertoire of transcribed genes and
contribute to tumorigenesis [167]. The N-terminal domain mediates protein—protein
interactions during binding of STAT3 dimers to DNA and in the assembly of the tran-
scriptional machinery, including the interactions between two STAT3 dimers to form
a tetramer, as well as with other transcriptional factors and regulators [43, 168, 169].
The N-terminal domain interaction with other transcription factors/cofactors leads to
formation of enchanceosomes [170] and its interaction with histone-modifier proteins
induces changes in chromatin structure [171]. These complex interactions together
maximize STAT3-dependent transcriptional control in normal and cancer cells [167].
Moreover, the NTD also has been implicated in the interaction of STAT3 with peptide
hormone receptors and the nuclear translocation of STAT3 [172—174]. Short peptides
(Table 5.3) derived from helices within the N-terminal domain, especially helix-2
(ST3-H2A2), recognized and bound to STAT3, but not to other STAT members, and
inhibited STAT3 transcriptional activity without affecting levels of pY-STAT3 [169,
175, 176]. The cell-permeable form of this peptide (Hel2K-Pen), generated by its
fusion with Penetratin (a protein transduction motif with sequence RQIKIWFPNRR-
Nle-KWKK-NH2), selectively induced cell growth inhibition and apoptosis of human
MDA-MB-231, MDA-MB-435, and MCF-7 breast cancer cells (ICs,~10 puM)
through robust induction of pro-apoptotic genes, as a result of altered STAT3 chroma-
tin binding [175-177]. Issues of peptide stability and bioavailability still remain major
challenges to be overcome for this unique approach to STAT3 inhibition to advance.

5.3.7 Inhibitors that Target Endogenous STAT3 Negative
Regulators

In normal cells, the level and duration of STAT3 activation is controlled by a variety
of mechanisms including dephosphorylation of receptor complexes and nuclear
STAT3 dimers by protein phosphatases (PTPases), interaction of activated STAT3
with members of the protein inhibitors of activated STAT (PIAS) family, and the
actions of suppressor of cytokine signaling (SOCS) protein members that inhibit
and/or degrade JAKs [178, 179]. Many different STAT3 inhibitors seem to work
through modulating the activity of these endogenous regulators (Table 5.4).
Several protein tyrosine phosphatases, including members of the Src homology 2
(SH2)-domain containing tyrosine phosphatase family (SHP-1 and SHP-2) and pro-
tein tyrosine phosphatase 1B (PTP-1B) [180-182] can deactivate STAT3 signaling
through direct dephosphorylation of pY-STAT3, thus, are useful targets [183]. In
many cancer cells, loss of regulation by these, lead to constitutive STAT3 activation,
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e.g. loss of SHP-1 enhances JAK3/STAT3 signaling in ALK-positive anaplastic
large-cell lymphoma and in cutaneous T cell lymphoma [184, 185]. Many chemical
agents also appear to up regulate SHP-1 activity/expression. As shown in Table 5.4,
sorafenib derivatives lacking Raf-1 kinase activity, e.g. SC-1, SC-43, and SC-49
[186—189], appear to reduce levels of constitutive pY-STAT3 (IC5,=1-5 pM) by
upregulation of SHP1 leading to inhibition of cancer cell growth in vitro (ICsy=2-5 pM)
and inhibition of xenografts growth in mice. Many other known JAK/STAT?3 inhibi-
tors e.g. betulinic acid [190], guggulsterone [191], 5-azacytidine [192], SC-2001
[193], sorafenib [194], beta-caryophyllene [195], boswellic acid [196], capillarisin
[197]. Honokiol [198], dovitinib [199], 1’-acetoxychavicol [200], gambogic acid
[201], dihydroxypentamethoxyflavone [202], butein [203], icariside II (a flavonoid
icariin derivative) [204] and 5-hydroxy-2-methyl-1,4-naphthoquinone (a vitamin K3
analogue) [205] can enhance the SHP-1 pathway (either by induction of SHP-1
expression or by increase of SHP-1 activity) and show anti-cancer potential.

Adenovirus mediated transduction of the SOCS3 gene also can reduce levels of
pY-STAT3 and thereby reduce SW620 and BEL704 xenograft growth [206, 207].
Other known negative STAT3-regulators also could be modulated in a similar way
to reduce STAT3 activity.

Woetmann et al. [208] showed that calyculin A, an inhibitor of serine phospha-
tases and the protein phosphatases (PPs) PP1yPP2A, induces (i) phosphorylation of
STAT3 on serine and threonine residues, (ii) inhibition of STAT3 tyrosine phos-
phorylation and DNA binding activity, and (iii) relocation of STAT3 from the
nucleus to the cytoplasm. Similar results were obtained with other PP2A inhibitors
(okadaic acid and endothall thioanhydride) but not with inhibitors of PP1 (tautomy-
cin) or PP2B (cyclosporine). There are other reports of a similar inhibition of STAT3
activity by calyculin A [209, 210] but observations with some of the other PP2A
inhibitors [209] could not be repeated.

STAT?3 activity is, in part, positively regulated by c-Src and negatively regulated
by a PKC-activated PTPase(s) in melanoma cells. The tumor-promoting phorbol
ester 12-O-tetradecanoylphorbol-13-acetate (TPA) was shown to inhibit melanoma
cell growth by suppression of STAT3 activity through upregulation of PTPase(s)
and upregulation of PKC [211], which led to a decrease in STAT3 DNA-binding,
STAT?3 target gene transcription, and inhibition of growth of melanoma cells [211].

5.3.8 Inhibitors with Other Mechanisms of Action

There are numerous examples of agents (Table 5.4) that inhibit STAT3 activity/
oncogenic function, that do not necessarily belong to any of the above groups of
indirect or direct STAT3-interacting compounds. These will be discussed in this
section.
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5.3.8.1 siRNA-Based Inhibitors

Apart from the ODNs, which block the ability of STAT3 DBD to bind the STAT3-
responsive sequence containing DNA, there also have been concerted efforts at
targeting STAT3 mRNA using siRNA and shRNA based methods as outlined
below.

Anti-sense therapy. Many antisense oligonucleotide (ASO)-based drugs, which
bind to messenger RNA (mRNAs) and inhibit the production of disease-causing
proteins, are at various phases of clinical trials. An ASO complementary to apoli-
poprotein B-100 mRNA, mipomersen sodium (Kynamro), received FDA approval
in January 2013 as an adjunct to statin-based lipid lowering therapy [212, 213].
AZDO9150 (ISIS-STAT3Rx or ISIS 481464) is a synthetic ASO against STAT3.
Information about its pre-clinical development is scant but its testing in clinical
trials is summarized below. RNA interference (RNAI) is a natural post-transcrip-
tional gene-silencing (PTGS) mechanism for silencing unwanted genes. The pro-
cess is initiated by the presence of double-stranded RNA, not a constituent of the
normal cell cytoplasm. The dsRNAs are cleaved by dicer, an endonuclease, into
20-25 nucleotide dsRNAs, referred to as short or small interfering RNAs (siR-
NAs). The RNA-induced silencing complex (RISC) separates the two strands,
and one of these strands then serves as a guide for sequence-specific degradation
of complementary mRNA. The utility of this approach is limited due to the short
half-life of transfected RNAs. This problem can be circumvented using a DNA-
directed RNA interference technique in which a short hairpin RNA (shRNA, a
double stranded RNA) is expressed in the cell after insertion of a DNA construct
into the nucleus. These sShRNAs then enter the RNAi pathway and gene silencing
can last for as long as the cell continues to produce the shRNA [214, 215]. This
strategy is under evaluation in several clinical trials for the treatment of several
diseases including cancers (#NCT01591356, #NCT00363714, #NCT00689065,
#NCT00938574). However, data regarding siRNA targeted silencing of STAT
genes for cancer therapy are limited to in vitro studies and in vivo studies of ani-
mal models only [216-224].

Intracellular therapeutic targets that define tumor immunosuppression in both
tumor cells and T cells remain intractable [225]. Administration of a covalently
linked siRNA to an aptamer (apt) that selectively binds cytotoxic T lymphocyte-
associated antigen 4 [CTLA4(apt)] allowed gene silencing in exhausted CD8" T
cells and Tregs in tumors as well as CTLA4-expressing malignant T cells [225].
CTLA4(apt) fused to a STAT3-targeting siRNA [CTLA4(apt)-STAT3 siRNA]
resulted in internalization into tumor-associated CD8* T cells overexpressing
CTLA-4 [226] and silencing of STAT3, which activated tumor antigen-specific T
cells in murine models [225]. Both local and systemic administration of
CTLA4(apt)-STAT3 siRNA dramatically reduced tumor-associated Tregs and
potently inhibited tumor growth and metastasis in various mouse tumor models
[225].
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5.3.8.2 Inhibitors Targeting Nuclear Translocation

The role of activated STAT3 as a DNA-binding transcription factor relies on the
ability of homodimers to traffic from the cytoplasm to the nucleus [178, 227-231].
Preventing this shuttle of STAT3 dimers could be a way to block STAT3 activity
[229]. Importins o3, aS, o7, and P, are involved in passage of STAT3 through the
nuclear pore [26, 229]. Once within the nucleus, TC45 dephosphorylates pY-STAT3,
which then becomes a substrate for exportin-1-mediated export [229]. Inhibition of
exportin 1 by leptomycin B or ratjadone A, has been shown to interfere with nuclear
export of STAT3; it reduces pY-STAT3 and STAT3-mediated transcription and
causes cells to undergo apoptosis [229]. Although interesting, any small-molecule
that inhibits general trafficking across the nuclear membrane is likely to be toxic
[229]. Whether an inhibitor of nuclear pore transit can be developed with sufficient
STAT?3 selectivity remains to be determined.

5.3.8.3 Inhibitor with Novel Modes of Action

There are a few inhibitors, which have very novel mechanisms of action, mostly by
way of modulating proteins or pathways indirectly regulating the STAT3 signaling
pathway (Table 5.4). E.g. capsaicin has been shown to have anti-carcinogenic
effects on various tumor cells through multiple mechanisms including STAT3 inhi-
bition [232-234]. Lee et al. showed that capsaicin treatment of glial tumors induced
downregulation of the IL-6 receptor gp130 by translation inhibition, and was asso-
ciated with activation of endoplasmic reticulum (ER) stress [235]. The depletion of
the intracellular pool of gp130 by capsaicin combined with the ER stress inducer led
to an immediate loss of the IL-6 response due to short half-life of membrane-
localized gp130 [235].

Platelet factor 4 (PF4) is an angiostatic chemokine that suppresses tumor growth
and metastasis and is frequently lost in multiple myeloma. Exogenous PF4 treatment
not only suppressed myeloma-associated angiogenesis, but also inhibited growth and
induced apoptosis in myeloma cells. It has been shown that PF4 negatively regulated
STATS3 by inhibiting its phosphorylation and transcriptional activity. Overexpression
of constitutively activated STAT3 could rescue PF4-induced apoptotic effects.
Furthermore, PF4 induced the expression of SOCS3, an endogenous STAT?3 inhibi-
tor, and gene silencing of SOCS3 abolished its ability to inhibit STAT3 activation,
suggesting a critical role of SOCS3 in PF4-induced STAT3 inhibition.

5.3.8.4 Other Inhibitors that May Act by Targeting STAT3

There are numerous reports of various compounds, most naturally occurring, that
are known to exert powerful anti-tumor effects, through their action on STAT3.
However, the mechanistic basis for their anti-STAT3 action is unknown. Some
examples are protoepigenone/RY 10-4 [236], shikonin [237], paclitaxel [238-240],
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vinrelbin [238-240], nifuroxazide [241], icaritin [242-245], and epigallocatechin-3
[246]. These are potent inhibitors that can reduce STAT3 activation and induce
growth inhibition and/or apoptosis and in many cases have been proven, in pre-
clinical animal models to reduce tumor growth. Further studies are necessary to
elucidate their exact mechanism of action.

In considering this group of compounds, as well as others listed above, it is
important to recall that proteases play an important role in STAT3 biochemistry,
including its posttranslational modulation [247, 248] and degradation. STAT3 pro-
teases include caspases, calpain, and the proteasome complex. Many compounds
induce cell cycle arrest and apoptosis accompanied by reduced pY-STAT3 levels. It
is frequently concluded that these compounds target STAT3 but the precise mecha-
nism of STAT3 targeting is not determined. A number of compounds proposed as
STAT3 inhibitors exert their antitumor effects by promoting STAT3 protein degra-
dation in cancer cells [249-251]. In addition, pY-STAT3 has been shown to undergo
caspase-dependent proteolytic cleavage [252]. Because cysteine proteases, such as
caspases and calpain, are well known intracellular effectors of apoptosis, the ability
of some purported STAT3 inhibitors to reduce pY-STAT may not be due to direct
targeting of STAT3, but rather a reflection of compound-induced apoptosis in which
pY-STAT3 levels are reduced by effector proteases within the apoptosis pathway.

5.3.9 Allosteric Effects of STAT3 Inhibitors

Namanja et al. [253] found that pY-peptide interactions with the SH2 domain of
STAT3 cause structural and dynamics changes in its LD and DBD. This inter-
domain allosteric effect likely is mediated by the flexibility within the hydrophobic
core of STAT3. In addition, a mutation (I5S68F) in the LD, identified in a patient with
autosomal-dominant hyper IgE syndrome (AD-HIES) induced NMR chemical shift
perturbations in the SH2 domain, the DBD and the CCD domain of STAT3, sug-
gesting conformational changes in these domains mediated by a point mutation in a
separate domain. Furthermore, they showed that the conformational changes in the
SH2 domain seen in the mSTAT3 I568F mutant was accompanied by the reduced
affinity of this mSTAT3 for pY-peptide. This effect may help explain the ability of
some compounds that bind domains other than the SH2 domain to affect STAT3-
pY-peptide binding. The recent paper by Mathew et al. [254] using a rhodium-(II)-
catalyzed, proximity-driven modification approach identified the STAT3 coiled-coil
domain (CCD) as a novel binding site for a newly described naphthalene sulfon-
amide inhibitor, MM-206. Despite binding to the CCD, this compound reduces
STAT?3 binding to pY-peptide and has structural features of C188, previously shown
to reduce STAT3 binding to pY-peptide [93, 94, 96], and BP-1-102, thought to bind
to the STAT3 SH2 domain. Findings with MM-206 [254] and STAT3 proteins con-
taining substitutions within the CCD, such as Asp170 [174], suggest that the CCD,
like the LD, also may engage in interdomain allosteric effects. Based on these find-
ings, one might need to reconsider notions about how STAT3 inhibitors
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demonstrated to bind to STAT3 and to reduce STAT3 activity actually mediate their
effects and may change our approach to designing drugs to target this oncogene.
The fact that selectivity and mechanisms of action of established STAT3 inhibitors
continue to be revisited and clarified [255, 256] reinforces this concept.

5.4 Entry of STAT3 Inhibitors into the Clinic

Attempts to develop peptide inhibitors [25, 44, 45, 51, 257] that target the pY-
peptide binding pocket within the STAT SH2 domain [45] quickly followed the
elucidation of the crystal structure of STAT3p homodimer [43] and confirmation
that STAT3 was an oncoprotein [8]. However, due to their lack of membrane perme-
ability and stability, non-peptidic small molecule inhibitors of STAT3 moved to the
forefront of this drug discovery area [61]. Although showing promising pre-clinical
activity in vivo, many compounds in this category show activity in the medium-to-
high micromolar range, indicating the need for additional optimization before tran-
sitioning to clinical trials involving systemic administration. STA-21 has completed
phase I/II trials in patients with psoriasis [258] with effective concentrations being
achieved at affected skin sites through topical application. Several agents that sys-
temically target the IL-6R/JAK/STAT3 signaling pathway are at various stages of
clinical trials (Table 5.5) for a cancer indication. STAT3 upstream antagonists
include the IL-6-neutralizing MADb siltuximab [259], the IL6R-anatgonist MAb
tocilizumab [260, 261], the JAK inhibitor ruxolitinib [262-268], AZD1480 [41,
269-272], OPB-31121 [273-278], fedratinib/SAR302503 [279-282], BSE-SFN
[283], pacritinib/SB1518 [284, 285], and the dual JAK2/gp130 inhibitors WP1066
[286-290] and OPB-51602 [291]. Direct STAT3 inhibitors include the STAT3-
decoys [292] and the STAT3-antisense oligonucleotide based inhibitor ISIS-
STAT3Rx (AZD9150) [293]. The third group of compounds includes two
re-purposed drugs that also inhibit STAT3 —the antiparasitic drug pyrimethamine
[283] and the HMG-CoA inhibitor Simvastatin [294—296].

The importance of the IL-6/JAK/STAT signaling pathway in many human malig-
nancies has, in part, spurred development of several IL-6 and IL-6 receptor inhibitors
for cancer treatment [297-299]. Siltuximab (CNTO 328), the chimeric anti-IL-6
MAD has been approved by the FDA in 2014 for the treatment of patients with HIV-
negative and HHV-8-negative multicentric Castleman’s disease (MCD), a lymphop-
roliferative disorder with germinal center hyperplasia and high morbidity, at a dose
of 11 mg/kg every 3 weeks [259, 300]. In a Phase I study, 18 of 23 patients (78 %)
had complete response, and 12 patients (52%) demonstrated objective tumor
response [301]. In a Phase II study, with HIV-negative and HHV-8-seronegative
patients with symptomatic MCD (n= 140), durable tumor and symptomatic responses
occurred in 18 of 53 patients (34 %) in the siltuximab group and none of 26 in the
placebo group [302]. A Japanese Phase 1 trial [303] in multiple myeloma patients
showed some responses, but in other studies the 11 mg/kg dose did not improve
progression-free survival or achieve other measures of response [259]. Out of the 16
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studies undertaken in various cancers with this agent, six have been completed, five
are still ongoing, and five have been either terminated or withdrawn because of lack
of efficacy. IL-6 signaling inhibition using the IL-6R monoclonal antibody, tocili-
zumab, has shown promising results in rheumatoid arthritis and related diseases in
approximately 230 trials [304] and is being evaluated in patients with cancers,
including multiple myeloma, both as an anti-myeloma therapy and as a method to
reduce GVHD after allogeneic stem cell transplant (SCT), as well as in recurrent
ovarian cancer as adjuvant with carboplatin/doxorubicin [260, 261]. Preliminary
analysis of the ongoing trial shows that immune reconstitution was preserved in
recipients of tocilizumab and there was a reduced incidence of grade 2—4 acute
GvHD [261]. A completed phase I trial combining carboplatin/doxorubicin with
tocilizumab and IFNo2b in patients with recurrent epithelial ovarian cancer (EOC)
revealed that functional IL-6R blockade is feasible and safe in EOC patients treated
with carboplatin/doxorubicin, using 8 mg/kg tocilizumab [260], and the combination
was recommended for phase II evaluation based on immune parameters.
Approximately 50 trials with the JAK inhibitor, ruxolitinib, in many different
cancer indications are underway and a few completed ones show some encouraging
results in myelofibrosis [305], but toxicity remains an issue. In phase III clinical stud-
ies, ruxolitinib provided rapid and durable improvement of myelofibrosis-related
splenomegaly and symptoms irrespective of mutation status, and was associated
with a survival advantage compared with placebo or best available therapy. But
because of dose-dependent cytopenias, blood count monitoring and dose titrations
were recommended [266]. The JAK2 mutation (c.1849G>T; p.V617F) causes con-
stitutive activation of Janus kinase (JAK)2 and dysregulated JAK signaling in myelo-
fibrosis (MF), polycythemia vera (PV), and essential thrombocythemia (ET).
Interestingly, in the phase III Controlled Myelofibrosis Study, patients with MF not
only achieved significant reductions in splenomegaly and improvements in symp-
toms with ruxolitinib vs. placebo but 26/236 patients carrying the allele, also had
their mutation burden lowered [306]; 20 achieved partial and 6 achieved complete
molecular responses, with median times to response of 22.2 and 27.5 months [306].
The phase I study [41] with AZD1480, a JAK inhibitor, in 38 patients with advanced
solid tumors, revealed rapid absorption and elimination with minimal accumulation
after repeated daily or twice daily dosing. Pharmacodynamic analysis of circulating
granulocytes demonstrated maximal reduction of pY-STAT3 within 1-2 h after dose,
coincident with C,,,,, and greater reduction at higher doses. The average reduction in
pY-STAT3 levels in granulocytes at the highest dose tested (70 mg daily), was 56 %
at steady-state drug levels. Dose-limiting toxicities (DLTs) included pleiotropic neu-
rologic adverse events (AEs), like dizziness, anxiety, ataxia, memory loss, hallucina-
tions, and behavior changes. The trial had to be stopped because of toxicity.
Another JAK inhibitor that showed the best potency in pre-clinical studies, OPB-
31121 [274-276], demonstrated insufficient antitumor activity in patients with
hepatocellular carcinoma (HCC) in a clinical trial [273]. In an open-label,
dose-escalation, and pharmacokinetic study of OPB-31121 in subjects with
advanced solid tumor observed that twice-daily administration of OPB-31121 was
feasible up to doses of 300 mg. The pharmacokinetic profile, however, was unfavor-
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able and no objective responses were observed [273]. A similar study in advanced
HCC also came up with the same result [273]. Furthermore, peripheral nervous
system-related toxicities were experienced, which may limit long-term administra-
tion of OPB-31121 [273].

A very recent interventional study will evaluate the effect of sulforaphane from
broccoli sprout extract (BSE-SFN) as a candidate natural chemopreventive agent
which is known to modulate key steps in melanoma progression and STAT3 medi-
ated gene transcription [307, 308] in melanocytic and stromal elements of 18 mela-
noma patients with at least two atypical nevi of >4 mm diameter and those who
have not received any form of systemic antineoplastic treatment for melanoma
within the last year before recruitment, The primary outcomes that will be measured
are (1) adverse events associated with oral sulforaphane, (ii) visual changes of atypi-
cal nevi size, border and color and (iii) the cellular changes.

Another new trial examines the safety and efficacy of the JAK?2 inhibitor, pacri-
tinib, for patients with AML in combination with either decitabine or cytarabine.
Pacritinib has been shown to work through inhibition of STAT3 and STATS [284].
Pacritinib is an active agent in patients with myelofibrosis (MF), offering a potential
treatment option for patients with preexisting anemia and thrombocytopenia. It
demonstrated a favorable safety profile with promising efficacy in phase I studies in
patients with primary and secondary MF. A subsequent multicenter phase II study
demonstrated efficacy [285]. Out of 26 evaluable patients who either had clinical
splenomegaly poorly controlled with standard therapies or were newly diagnosed
with intermediate- or high-risk Lille score, 8 patients (31 %) achieved a >35%
decrease in spleen volume (MRI) and 42 % on the whole attained a >50 % reduction
in spleen size by physical examination. Grade 1 or 2 diarrhea (69 %) and nausea
(49 %) were the most common treatment-emergent adverse events. The study drug
was discontinued in 9 patients (26 %) due to adverse events (4 severe).

STAT3-decoy oligonucleotides (ODN) targeting the STAT3 DBD [292] and
STAT3 siRNA based formulations [293] are the only direct STAT3 inhibitors that
are in clinical trial for a cancer indication. Expression levels of STAT3 target genes
were decreased in head and neck cancer patients following intratumoral injection
with the STAT3 decoy compared with tumors receiving saline control in a phase 0
trial [292]. While intratumoral administration clearly shows target inhibition, it
should be noted that there is no clear evidence that the same level of efficacy would
be attained if the ODN were systemically administered. Therefore, it would be
interesting to assess the effectiveness of this and the subsequent cyclic ODNs, on
tumor STAT3 activity when delivered systemically in patients. Considering that
effective and safe systemic intracellular delivery remains a challenge in this field it
appears that there still remain some obstacles that have to be overcome before
ODN:s realize their full clinical potential as STAT3-targeting therapeutic agents.

STAT?3 antisense based AZD9150 (ISIS-STAT3Rx) showed single-agent antitu-
mor activity in patients with highly treatment-refractory lymphoma and NSCLC in
a phase 1 dose escalation study. Of the 25 patients enrolled (12 advanced lym-
phoma; 7 with DLBCL, 2 Hodgkin’s lymphoma, 2 follicular non-Hodgkin’s lym-
phoma, 1 mantle cell lymphoma), 44 % (11/25) achieved stable disease (SD) or a
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partial response (PR); three of six patients (50 %) with treatment-refractory DLBCL
had evidence of tumor shrinkage and two patients (33 %) achieved a confirmed
durable PR [293]. The only NSCLC patient evaluated showed evidence of near-
complete resolution of highly treatment refractory NSCLC liver metastasis upon
first restaging, with additional stabilization of mediastinal lymph nodes in response
to AZD9150 treatment (3 mg/kg) [293]. The maximum tolerated dose (MTD) of
AZD9150 was determined to be 3 mg/kg. A rapidly evolving thrombocytopenia (in
the first month of dosing) was observed in two of nine patients at 4 mg/kg and was
considered the dose-limiting toxicity (DLT). A more chronic slowly progressing
thrombocytopenia also occurred after 4-6 months of dosing at 2 and 3 mg/kg (and
for most patients at 4 mg/kg) and was effectively managed with pauses and dose
frequency adjustments. The slowly progressing thrombocytopenia seen in patients
at or below the MTD is consistent with the reported role of STAT3 in megakaryo-
poiesis [309, 310], whereas the rapidly progressing thrombocytopenia seen above
the MTD was of uncertain etiology. Other drug-related adverse events included
aspartate aminotransferase (AST) elevation (44 %), alanine aminotransferase (ALT)
elevation (44 %). Responses have also been seen in the DLBCL study. Dose escala-
tion continues in the HCC study and knockdown of STAT3 in peripheral blood
mononuclear cells (PBMCs) has been shown. IONIS-STAT3Rx, a variant of
AZD9150 is also being examined for safety in patients with advanced cancers.

Tumor-induced STAT3 generates an immunosuppressive microenvironment
and, therefore, has become a promising target for cancer therapy. Based on this
premise, an ongoing clinical trial is investigating the effects of the antiparasitic
drug, pyrimethamine, an inhibitor of STAT3 [283], in chronic lymphocytic leuke-
mia (CLL) patients. Interestingly, pyrimethamine does not affect STAT3 phosphor-
ylation [283] but does affect transcription of STAT3 gene targets.

Another re-purposed STAT3-inhibitor, simvastatin, an inhibitor of 3-hydroxy-3-
methylglutaryl-coenzyme A (HMG-CoA) [294-296] is being tested in a phase I
trial in combination with topotecan and cyclophosphamide for refractory and/or
relapsed solid or CNS tumors of childhood. HMG-CoA reductase inhibitors, or
“statins”, lower LDL (low density lipoprotein) cholesterol by inhibiting cholesterol
biosynthesis. Statins also have been found to decrease the incidence of cancer [311,
312]. Statins have been shown to inhibit IL-6 mediated STAT3 activation and pre-
vent recruitment of pro-inflammatory cells to injured heart tissue [313].

In conclusion, most of the inhibitors in trial, which target STAT3 in various can-
cer indications, belong to the upstream and repurposed inhibitors groups. None of
the direct small-molecule STAT3 inhibitors under development has entered clinical
trials. Since the pharmacokinetic properties of many of these are not well elabo-
rated, it is difficult to comment on their preparedness to go to the clinics. The most
promising in this regard is C188-9. Pharmacokinetic (PK) and toxicity studies in
mice, rats, and dogs demonstrated that C188-9 provides excellent plasma exposures
following oral administration and revealed no toxicity detectable by gross,
microscopic or clinical laboratory evaluations when administered up to a dose of
100 mg/kg/day for 28 days in dogs, and up to a dose of 200 mg/kg/day for 28 days
in rats [96]. Tumor PK studies of C188-9 in mice at 10 mg/kg demonstrated tumor
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levels twice those of plasma levels and nearly 3 times the ICs, for pSTAT?3 inhibition
[96]. C188-9 inhibits growth and survival of many types of cancer cells in vitro,
including AML [95, 97], NSCLC [99], breast cancer (Dobrolecki et al. 2016, manu-
script in preparation), and HNSCC [96] and inhibits the growth of NSCLC and
HNSCC xenografts in vivo [96, 99].

5.5 Conclusion

Due to the essential contributions of STAT3 to virtually all the hallmarks of cancer,
numerous approaches have been applied to identify molecules that effectively block
STAT3 signaling to treat and/or prevent cancer, including peptidomimicry, de novo
rational design, screening chemical libraries in silico and in vitro, and FBDD. Despite
these efforts, few specific and selective STAT3 inhibitors with optimal anti-STAT3
activity have garnered the requisite pharmacokinetic and pharmacodynamic creden-
tials to proceed to clinical trials. Some authors have stated that, unlike small enzy-
matic clefts, the STAT3:STAT3 dimer represents a protein-protein interaction that
involves too large a surface area [86] to be effectively targeted by small, drug-like
molecules [314]. These interaction surfaces and others involved in STAT3 protein-
protein and protein-DNA interaction also are shallow and relatively featureless, as
opposed to the well-defined binding pockets seen in enzyme active sites, thereby
making the designing difficult [315]. In addition, the binding regions of STAT3
protein—protein or DNA—protein interactions are often non-contiguous, making
mimicry of these domains difficult to accomplish for simple peptides or peptidomi-
metics [314]. Yet, several small-molecule STAT3 inhibitors are under development,
which have good binding affinity for STAT3, potent STAT3 inhibitory activities,
and a good safety profile. If these compounds fail to progress into drugs, efforts
need to continue in this area of drug development as the impact of having an effec-
tive STAT3 inhibitor available in the clinic to treat and/or prevent many cancers will
be substantial. Future strategies directed toward the identification of new small-
molecule STAT3 probes should combine conventional screening-based strategies
with FBDD and structural analytical tools, such as NMR analysis.
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