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    Chapter 5   
 STAT3 Inhibitors in Cancer: A Comprehensive 
Update                     

     Uddalak     Bharadwaj     ,     Moses     M.     Kasembeli     , and     David     J.     Tweardy    

    Abstract     STAT3 is an important signaling molecule that modulates a wide range 
of genes by relaying extracellular signals from the plasma membrane to the nucleus 
in response to peptide hormone binding. It is known to play a prominent role in the 
initiation and progression of cancer, as it is constitutively activated in 25–100 % of 
more than 25 different malignancies and has been implicated in nearly all the hall-
marks of cancer. In addition, STAT3 contributes to development and maintenance 
of cancer stem cells, as well as to cancer immune evasion and resistance to chemo-
therapy and radiotherapy, making it an even more attractive target for cancer ther-
apy. In this chapter, we give an overview of strategies involved in targeting STAT3 
and discuss recent advances in the development of STAT3 modulating agents.  

  Keywords     Cancer   •   Oncogene   •   Kinase   •   Inhibitor   •   Signaling   •   Phosphorylation   • 
  High throughput screen       •   Transcriptional activation   •   Therapeutic   •   Dysregulated       • 
  SH2   •   Peptidomimetics   •   Aptamer   •   Decoy   •   Drug design       •   Nuclear   •   Allosteric   • 
  Interference   •       Rational   •   Clinic   •   Clinical trial   •   STAT3   •   Resistance  

5.1       Introduction 

 Signal transducer and activator of transcription 3 (STAT3) is a member of a family of 
seven proteins that are known to play important roles in growth factor and cytokine 
signaling [ 1 ]. Canonical signal transduction by STAT3 is initiated by the recruitment 
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of STAT3 to ligand activated membrane receptor complexes leading to a key 
phosphorylation event on Y705, which in turn induces a confi guration change leading 
to tail-to-tail dimerization mediated by reciprocal SH2/pY705-peptide ligand interac-
tions [ 2 ,  3 ]. The active dimer accumulates in the nucleus, where it binds to promoters 
and transcriptionally regulates a large number of target genes encoding proteins 
involved in cell survival, cell cycle progression, homeostasis, and infl ammation. 

 Under normal physiological conditions the phosphorylation status of STAT3 in the 
cell is closely tied to receptor activation in response to extracellular stimuli, such that the 
intensity and duration of the intended signal is tightly regulated. Regulation of STAT3 is 
achieved by a number of elements that either act through negative feedback control on the 
phosphorylation of STAT3 or deactivation by dedicated nuclear phosphatases. 
Pathological conditions may arise in those instances where anomalies in the STAT3 sig-
naling cascade lead to constitutive activation [ 1 ]. Hyperphosphorylation of STAT3 has 
been shown to occur through a variety of mechanisms, including, unregulated autocrine 
and paracrine secretion of cytokines and growth hormones [ 4 ], expression of intrinsically 
activated tyrosine kinases or receptors [ 5 ], or reduced levels of endogenous negative regu-
lators of STAT3 signaling such as SOCS3, PIAS3, nuclear phosphatases [ 6 ,  7 ].  

5.2     STAT3, The Oncogene 

 Dysregulated activation of STAT3 has been linked to the etiology and molecular 
pathogenesis of many diseases, most prominently cancer [ 4 ,  8 ], where the STAT3 
signaling pathway has been implicated in nearly all features of cancer biology [ 7 ], 
including anti-apoptosis [ 9 ], cell transformation [ 8 ], growth and proliferation [ 2 ], 
angiogenesis [ 10 ], metastasis [ 11 ], and cancer stem cell maintenance [ 12 ]. 
Accordingly, over-expression or constitutive activation of STAT3 frequently occurs 
in a large number of both solid and hematological tumors (Table  5.1 ).

   In addition to its established role in cell transformation and tumorigenesis, 
STAT3 oncogenic signaling has been implicated in immune regulatory mechanisms 
of multiple tumors [ 13 ]. For example, several studies showed that persistent activa-
tion of STAT3 leads to the suppression of anti-tumor immunity by promoting Treg 
recruitment within the tumor microenvironment, while negatively regulating antitu-
mor Th1-mediated immune response [ 14 ,  15 ]. In addition, recent fi ndings also 
revealed that STAT3 plays a crucial role in tumor immune resistance, as constitutive 
STAT3 activation has been shown to drive the expression of PD-L1, an immune 
checkpoint ligand that mediates immune inhibition within the tumor microenviron-
ment [ 16 ]. Overall, it appears that STAT3 plays an important role in anti-tumor 
immune response by up regulating immune inhibitors while at the same time sup-
pressing tumor immune activators. 

 From a therapeutic perspective, another signifi cant aspect of STAT3 signaling 
that also merits attention is its role in chemotherapy resistance. Despite initial clinical 
responses to both targeted and cytotoxic cancer drugs, relapses are frequent and 
drug resistance remains a major obstacle in curing cancer [ 17 ,  18 ]. Because STAT3 
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signaling drives gene expression promoting cell growth and resistance to apoptosis, 
persistent activation of STAT3 is thought to confer resistance to drug mediated 
apoptosis [ 19 ]. Numerous studies show that hyper-activated STAT3 signaling plays 
a signifi cant role in chemotherapy resistance. Accordingly, the inhibition of acti-
vated STAT3 signaling appeared to sensitize resistant tumor cells to the cytotoxic 
agents [ 20 ]. STAT3 is also emerging as a major contributor to adaptive resistance to 
targeted drug therapy. Notably, it has been demonstrated that STAT3 activation via 
a positive feedback mechanism underpins frequently observed drug resistance in 
many oncogene addicted tumor cells. Similarly, inhibition of STAT3 reversed drug 
resistance to RTK targeting. Taken together, these fi ndings support targeting STAT3 
to overcome resistance to cancer therapy [ 17 ,  21 ]. 

 There is an overwhelming amount of clinical and preclinical data in solid and 
hematological cancers supporting STAT3 as a pharmacological target, which has 
prompted substantial efforts to develop STAT3 inhibitors. Currently, there are a 
number of STAT3 inhibitors in clinical trials and many more in active development, 
as will be discussed later in this chapter. Here we provide an update on efforts to 
develop inhibitors of STAT3 to treat various cancers and will discuss the strategies 
involved in targeting STAT3 and the advantages and pitfalls of each approach.  

5.3     Strategies for STAT3 Inhibition 

 The STAT3 signaling cascade provides many opportunities to manipulate its activ-
ity, because each step in the activation process can serve as a potential target. In 
order to pharmacologically modulate STAT3 activity, it is important to understand 
how each step contributes to the transcriptional function of STAT3, as this informa-
tion forms a basis for target identifi cation and design of specifi c inhibitors (Fig.  5.1 ).

5.3.1       Structure and Biochemical Properties of STAT3 

 The initial steps in STAT3 activation are triggered by tyrosine phosphorylation events 
that drive key protein-protein interactions, which are necessary for signal transduction 
from the plasma membrane to the nucleus [ 22 ]. STAT signaling initiated by peptide 
hormones generally occurs through 3 types of receptors—receptor kinases, receptor-
linked kinases, or G–coupled receptors [ 23 ,  24 ]. Peptide ligand binding stimulates 
cytoplasmic receptor-associated kinase activity leading to phosphorylation of recep-
tors at key tyrosine residues. Phosphorylated tyrosine residues on the receptors act as 
anchors that recruit STAT3 proteins via their SH2 domains [ 25 ]. STAT3 is phosphory-
lated at Y705 and subsequently dimerizes in a tail-tail conformation. 

 Migration from the cytoplasm into the nucleus is required for STATs to transduce 
signals and regulate gene expression in response to extracellular stimuli. It has been 
noted that once dimerized in a tail-to-tail confi guration, STATs rapidly accumulate 
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in the nucleus. Though initially thought to be dependent on tail-to-tail dimerization 
of STAT3, subsequent studies now suggest that STAT3 is constitutively shuttled 
between the cytoplasm and nucleus independent of phosphorylation [ 26 ]. Studies 
show that rather than a passive process dependent on diffusion, nuclear transloca-
tion of STAT3 is an active process. Indeed, the nuclear import and export of STAT3 
as well as other STATs is facilitated by a group of proteins belonging to the karyo-
pherin- B family called importins [ 27 ]. Available data shows that importin α3, α5, 
α6, and α7 are involved in the nuclear translocation of STAT3. Importin α3 and α6 
are linked to translocation of unphosphorylated STAT3 while α5 and α7 are required 
for pY-STAT3 nuclear import [ 28 ]. All importins involved in STAT3 traffi cking 
appear to utilize a NLS located within the coiled-coiled domain of STAT3 [ 29 ,  30 ]. 
Once localized in the nucleus, STAT3 binds to specifi c DNA elements via its DNA 
binding domain (DBD), whereby it engages the transcriptional machinery by 
recruiting a number of coactivators and chromatin remodelers, such as cAMP 
response element binding protein/p300 (CBP/p300) complex and steroid receptor 
coactivator 1 [ 31 ,  32 ].  

  Fig. 5.1    Strategies for targeting STAT3 signaling. STAT3 signaling cascade is triggered by phos-
phorylation. ( a ) Upstream events including ligand binding, receptor activation or kinase activity can 
be blocked to prevent STAT3 phosphorylation. ( b ) Blocking STAT3 recruitment onto receptors inhib-
its phosphorylation of STAT3 at Y705 and consequently SH2-SH2 dimerization. ( c ) Inhibitors that 
disrupt the SH2-SH2 dimer block the transcriptional activity of STAT3. ( d ) Nuclear localization can 
be blocked by targeting importins or importin binding sites on STAT3. ( e ) The DNA binding domain 
can be targeted to inhibit STAT3 DNA binding, consequently transcriptional activity       
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5.3.2     Functional Domains of STAT3 

 STAT3 is composed of an N-terminal domain (NTD), a coiled-coil domain (CCD), 
a DNA-binding domain (DBD), a linker domain (LD), an SH2 domain, and a 
C-terminal domain. The structure of the core fragment of STAT3, which includes 
the CCD, DBD, LD and SH2 showed that each domain of STAT3 has a distinct 
function and is essential for the signal transduction and transcriptional activity of 
STAT3 (Fig.  5.2 ).

   STAT3 has no enzymatic activity that would make it amenable to small-molecule 
intervention; rather, its mode of action depends on protein-protein interactions (PPI) 
and protein-DNA interactions. Thus, strategies for targeting STAT3 mainly rely on 
the ability to disrupt these interactions. Although the prevailing dogma is that PPI 
interfaces generally lack special topological features amenable to small molecule 
inhibition, STAT3, nonetheless, has proven to be a compelling protein to target 
using small molecules. The available X-ray crystallographic data of both the mono-
mer and dimerized STAT3 bound to DNA have been instrumental in revealing 
 physical chemical properties of phosphotyrosyl (pY) peptide binding, as well as 
DNA recognition that have laid the foundation for the development of many STAT3 
inhibitors by rational design.  

5.3.3     Inhibitors Acting Upstream of STAT3 Activation 

 There is a strong correlation between the phosphorylation status of STAT3 at Y705 
with tumor initiation and progression (Table  5.1 ), yet the reason for dysregulated 
STAT3 signaling is only rarely due to mutations in the signaling molecule itself. 
Although the reason for abnormal STAT3 signaling in cancer is not fully under-
stood, most instances of hyper-phosphorylated STAT3 observed in cancer are medi-
ated by receptor tyrosine kinases (RTK), for example EGFR, or non-receptor 
tyrosine kinases, such as JAK and SRC, more specifi cally, by unchecked intrinsic 
tyrosine kinase activity of RTK, over expression of RTK, or persistent stimulation 
of RTK or tyrosine kinase-associated receptors by cytokines and growth factors 
[ 33 – 35 ]. As such, intense efforts have focused on inhibiting events upstream of 
STAT3 that drive STAT3 phosphorylation [ 36 ,  37 ]. 

  Fig. 5.2    Domains structure of STAT3. STAT3 has 6 domains with specifi c biochemical functions. 
NH2-terminal domain (NTD), coil coiled domain (CCD), DNA binding domain (DBD), linker 
domain (LD), SRC homology domain (SH2), and transactivation domain (TAD)       
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 There are several therapeutic strategies used to block upstream activation of 
STAT3, One involves targeting the tyrosine kinase enzymatic activity of specifi c 
receptors or associated kinases using small molecule inhibitors of RTKs, JAK2 
and SRC kinases. Another strategy involves disruption of protein-protein interac-
tions necessary for receptor mediated signal transmission across the plasma mem-
brane. The later strategy has been achieved in several ways including blocking 
cytokine binding to the extracellular portions of the receptors, and disruption of 
receptor oligomerization. These strategies primarily involve blocking cytokine or 
growth factor activation of cognate receptors with the use of monoclonal antibody-
based inhibitors that target either the ligand or critical sites on extracellular portion 
of receptors. Another strategy in this category involves the use of an aptamer, a 
short peptide portion derived from a random peptide library integrated into the 
thioredoxin scaffold protein, which specifi cally binds to the intracellular domain of 
the EGF receptor blocking the recruitment of substrate to the receptor [ 38 ]. 

 All the above approaches have shown success in targeting STAT3 activation 
leading to induction of cancer cell death (Table  5.2 ) and have demonstrated signifi -
cant clinical effi cacy. However, acquired resistance against tyrosine kinase inhibi-
tors remains a signifi cant challenge [ 21 ,  39 ]. Besides, there have been inhibitors 
(e.g. OPB-31121) that showed very low nanomolar level IC 50 s in pre-clinical set-
tings, but eventually failed to show effi cacy in clinical trials. Moreover, due to the 
pleiotropic nature of cytokines such as IL-6 there are always concerns of potential 
toxicity due to off- target effects [ 40 ,  41 ]. Recent studies now provide a rationale for 
direct targeting of STAT3 by itself or in combination with other therapeutic 
approaches for combating drug resistance in cancer treatment [ 21 ,  42 ].

5.3.4        Inhibitors Targeting the STAT3 SH2 Domain 

 The SH2 domain presents a defi ned and well-characterized targeting site with suitable 
topological features amenable to small molecule intervention and has proven to be 
tractable for small molecule inhibition of STAT3. Additionally, the SH2 domain of 
STATs have a dual function where they act as receptor recruitment modules as well 
as dimerization domains necessary for high-affi nity STAT DNA-binding. The SH2 
domain has become the favored target for platforms geared towards rational design, 
as well as  in vitro  and cell based screens for several reasons, including: (i) the 
pY-peptide binding site provides a suitable druggable site for  in silico  docking 
screens, (ii) pY705 phosphorylation is a convenient surrogate for STAT3 activation 
making it amenable to very robust cell based high-throughput screening (HTS) 
assays, and (iii) the SH2 domain binds short cognate pY-peptide ligands and, thus, 
provides a platform for competitive inhibition bind assays such as SPR and fl uores-
cence polarization that have routinely been used to directly screen for competitive 
inhibitors of pY-peptide binding. The greatest effort at designing STAT3 inhibitors 
has been directed at the SH2 domain, as summarized below (Table  5.3 ).
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, D
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 pY

, D
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 pY
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5.3.4.1       Peptides and Peptidomimetics 

 Elucidation of the crystal structure of STAT3β-STAT3β-DNA complex [ 43 ] and sub-
sequent studies [ 25 ,  44 – 46 ] indicated that the SH2 domain facilitates binding to spe-
cifi c pY-peptide motifs within receptor complexes and mediates dimerization of two 
STAT3 monomers via reciprocal interaction between the SH2 of one monomer and 
pY-peptide motif,  702 AAPY*LKTKFI 711 , on the other. Strategies to target STAT3 by 
identifying pY-peptide inhibitors of STAT3 SH2 binding to pY-peptide ligands have 
been pursued by several groups (Table  5.3 ) [ 47 ]. Turkson et al. showed that pY-
peptides based on the sequence PY*LKTK surrounding Y705 within STAT3, inhib-
ited STAT3 DNA binding (IC 50  = 235 μM) and pulled down STAT3 from lysates of 
unstimulated cells [ 45 ]. Alongside the usual limitations of the peptide approaches, 
e.g. low cell permeability, instability, and the consequential low biological activities, 
the requirement for the phosphorylation on Tyr for the inhibitory activity presented 
another challenge to making this approach biologically useful. Covalently attaching 
a membrane-translocating sequence (mts) of hydrophobic amino acids 
(AAVLLPVLLAAP) to the C-terminus of the peptide improved membrane permea-
bility and PY*LKTKmts inhibited STAT3-mediated gene transcription and malig-
nant transformation, and induced apoptosis in v-Src-transformed NIH3T3 fi broblasts 
albeit at 1 mM concentration [ 45 ,  48 ], underscoring the potential diffi culty of con-
verting this approach into an effective therapeutic modality. The exploration of pep-
tidomimetic and phosphotyrosine (pY) mimic approaches led to the identifi cation of 
ISS 610, a peptidomimetic analog of the tripeptide, PY*L [ 49 ], the minimal peptide 
from PY*LKTK that was required for STAT3 inhibition (IC 50  = 182 μM). PY*L 
mimic, ISS 610, better disrupted STAT3 DNA-binding activity (IC 50  = 42 μM) [ 45 , 
 49 ], and had increased STAT3 selectivity, (STAT1 IC 50  = 310 μM; STAT5 
IC 50  = 285 μM) but still had weak intracellular inhibitory properties (IC 50  = 1 mM), 
due to poor membrane permeability. The abysmal intracellular performance of the 
peptide forced the group to employ computational modeling to probe the binding of 
ISS 610 to the STAT3 SH2 domain, which led to generation of the oxazole-based 
small molecule S3I-M2001 having increased membrane permeability but similar 
STAT3 DNA binding inhibition (IC 50  = 79 μM), loss of specifi city (STAT1 
IC 50  = 159 μM), but improved intracellular activity [ 50 ]. S3I- M2001 reduced pY-
STAT3 levels, DNA-binding, nuclear translocation, and transcriptional activity in 
NIH3T3/v-Src fi broblasts and human breast carcinoma cells at 50–100 μM. Cell 
growth inhibition ability was still weak (IC 50  = 100 μM), including inhibition of cell 
growth, survival, and metastasis of NIH3T3/v-Src fi broblasts and human breast and 
pancreatic carcinoma cells with increased pY-STAT3. But importantly, it showed a 
signifi cant regression of MDA-MB-231 xenografts at 5–20 mg/kg [ 50 ]. 

 Another peptide-based approach used pY-peptides derived from STAT3 SH2 
domain interacting growth factor or cytokine receptors, e.g. EGFR and gp130, to 
block SH2-pY-peptide ligand interaction. Shao et al. showed that a phosphododeca-
peptide (PDP) based on the sequence surrounding Y1068 within the EGFR could 
directly bind non-phosphorylated STAT3 and inhibit pY-STAT3 DNA binding, 
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ligand-stimulated STAT3 activation, and TGFα/EGFR-mediated autocrine growth in 
cancer cells [ 25 ]. Examining the structural basis for the specifi city of STAT3-SH2 for 
pYXXQ peptides revealed that only pY-peptides containing +3 Q (not L, M. E or R) 
bound to wild-type STAT3-SH2 which required its K591 or R609 residues, whose 
side-chains interact with the peptide pY, and E638, whose amide hydrogen bonds with 
oxygen within the +3 Q side-chain when the peptide ligand assumes a β turn [ 25 ,  51 ]. 

 Another approach found gp130-derived STAT3-inhibitory pY-peptide Y*LPQTV 
and several modifi ed versions, including hydrocinnamoyl-Tyr (PO3 H2)-Leu- cis - 
3,4-methanoPro-Gln-NHBn [ 44 ,  52 ], that showed potent inhibition of STAT3 
DNA- binding activity (IC 50  = 0.15–0.29 μM). The peptidomimetic CJ-1383 devel-
oped from these, inhibited constitutive pY-STAT3 and inhibited growth of breast 
cancer cell lines (IC 50  = 3.6–11.2 μM). PM-73G, another peptidomimetic developed 
from Y*LPQTV, also showed a low micromolar IC 50  of pY-STAT3 reduction in 
cancer cells, inhibited their growth, and blocked xenografts formation [ 53 ,  54 ]. 

 The peptide aptamer APT STAT3 -9R, which has a tryptophan zipper scaffold 
attached to a STAT3-binding peptide and a cell-penetrating motif, was screened 
from a randomized peptide library [ 55 ]; it specifi cally interacted in SPR assays with 
the STAT3 dimerization domain (K d  = 231 nM), reduced levels of pY-STAT3, DNA 
binding, and transcriptional activity [ 55 ] and blocked the growth of A549 cells  in 
vitro  (IC 50  = 10–20 μM) and  in vivo . Another aptamer, the recombinant STAT3 
inhibitory peptide aptamer (rS3-PA) also decreased pY-STAT3 levels, inhibited 
growth of cancer cells  in vitro , and reduced Tu9648 xenograft growth [ 56 – 59 ]. 
Although partly a peptide, these aptamers differ in their mode of action from pep-
tide inhibitors [ 47 ]. 

 A phosphate binder, e.g. Lewis acidic metal–picolylamine complex, was shown 
to act as a SH2-proteomimetic and disrupt pY-peptide–STAT3 complexes and also 
was potent in its anti-STAT3 activity (IC 50  = 15–128 μM) as well it ability to inhibit 
growth of various cancer cells (IC 50  = 11–100 μM) [ 60 ].  

5.3.4.2     Small-Molecules 

 Despite having potent STAT3-inhibitory activity, peptides and peptidomimetics 
continue to suffer the limitations of  in vivo  instability and poor membrane permea-
bility. Most of the peptides have not been tested in xenograft models and those that 
were tried, with the exception of rS3-PA, had to be administered intratumorally 
(IT), limiting their effective use  in vivo  [ 47 ]. Nevertheless, these studies provided 
the proof of concept that the STAT3-SH2/pY-peptide interaction was amenable to 
targeting and provided the impetus for many programs engaged in designing small 
molecules for this purpose. 

  SH2 inhibitors resulting from rational design or high-throughput screens.  A 
structure-based virtual screening of ~425,000 compounds from four different chem-
ical libraries followed by examination of 100 of the fi rst 200 compounds in an  in 
vitro  STAT3-luciferase assay identifi ed STA-21, a deoxytetrangomycin, with potent 
cell growth inhibitory activities (IC 50  = 12.2/18.7 μM in DU145/PC3, respectively). 
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Modeling studies suggested that STA-21 binds to the SH2 domain of STAT3 and 
forms a number of hydrogen bonds with residues that form the pocket that binds the 
pY residue, including Arg-595, Arg-609, and Ile-634, and thus inhibits STAT3 
dimerization, nuclear translocation, DNA-binding, gene transcription, and inhibits 
growth of breast and soft tissue sarcoma cell lines [ 61 – 63 ] with constitutively acti-
vated STAT3. Unexpectedly, STA-21 only minimally reduces levels of constitu-
tively phosphorylated STAT3. The group also identifi ed Compound1, a derivative of 
STA-21 [ 61 ], with similar STAT3 and cell growth inhibitory properties. Another 
slightly more potent structural analogue LLL-3 had better cellular permeability than 
STA-21 and inhibited growth of glioblastoma (IC 50  = 10–20 μM), prostate cancer 
(IC 50  = 11.3 μM), and CML cells (IC50 = 6.3 μM). Intratumoral injection of LLL-3 
also inhibited intracranial glioblastoma xenografts in nude mice and increased their 
survival [ 64 ]. The acetyl group of LLL-3 was then replaced with sulfonamide to 
develop another STAT3 inhibitor, LLL-12 [ 65 – 73 ]. LLL-12 reduces pY-STAT3 lev-
els (IC 50  = 0.16–3.09 μM) and the growth of various cancer cell lines  in vitro  includ-
ing osteosarcoma cell lines U2Os, SAOS2, and SJSA (IC 50  = 0.3–0.8 μM,), breast 
cancer cell lines MDA-MB-231 and SKBR3 (IC 50  = 0.97–3.1 μM,), pancreatic can-
cer cell lines HPAC and Panc-1 (IC 50  = 0.16–0.29 μM), glioblastoma cell lines 
U87MG and U373MG (IC 50  = 0.21–0.86 μM) and myeloma cell lines U266 and 
ARH-77 (IC 50  = 0.49–1.9 μM), as well as their xenografts [ 66 ,  69 ,  70 ,  72 ]. 

 Stattic ( S tat  t hree  i nhibitory  c ompound) was another early small molecule STAT3 
inhibitor discovered by high-throughput screening of chemical libraries [ 74 ]. Stattic 
selectively inhibited STAT3 binding to pY-peptide (GY*LPQTV; IC 50  = 5.1 μM) and 
blocked IL-6-induced STAT3 activation, nuclear accumulation, and DNA- binding 
activity (IC50 = 20 μM). It effi ciently blocked the growth [ 74 – 76 ] of several cancer 
cell lines with increased levels of pY-STAT3 (IC 50  = 0.43–5.6 μM), as well as 
UM-SCC-17B orthotopic xenografts [ 76 ]. Stattic was used as an adjuvant to sensitize 
radioresistant esophageal squamous cell carcinoma (ESCC) cells and xenografts to 
radiation [ 77 ], and to sensitize ovarian cancer cells to cisplatin [ 78 ]. A structure-activ-
ity relationship (SAR) analysis revealed that saturation of the vinyl sulfone leads to 
loss in activity. In addition, the presence of 2 mM dithiothreitol (DTT), a nucleophile 
donor, abrogated STAT3 inhibitory activity of Stattic, suggesting the nucleophilic 
attack of the sulphonic double bond by a cysteine in the STAT3 SH2 domain [ 74 ]. 
Recently, MS-based studies using high quantities of Stattic (800 μM; 10 μM of pY-
STAT3) suggested that eight molecules of Stattic bind to one pY-STAT3 scaffold and 
identifi ed Cys468 as one possible alkylation site [ 79 ]. However, a more recent paper 
[ 75 ] reported covalent binding of nine Stattic molecules to one unphosphorylated core 
STAT3 protein molecule at a lower concentration (50 μM/10 μM STAT3). Four or fi ve 
of the nine covalently-modifi ed residues are cysteines, but Cys468 and Cys542 were 
not among these [ 75 ]. A recent report by Sanseverino et al. indicated that Stattic tar-
gets other STAT proteins, including STAT1 and STAT5 [ 80 ]. 

 Another STAT3 inhibitor resulting from structure-based high-throughput vir-
tual screening of the National Cancer Institute (NCI) chemical libraries was 
S3I-201/NSC74859. In modeling studies, S3I-201 docked to the pTyr binding 
site of STAT3-SH2 domain through its salicylic acid moiety, inhibited STAT3 
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DNA- binding (IC 50  = 86 μM), and inhibited proliferation of several cancer cell 
lines, including hepatocellular carcinoma, breast cancer, and prostate cancer 
albeit with high IC 50 s (100–300 μM) [ 81 ,  82 ]. However, it successfully inhibited 
growth of MDA-MB-231 xenografts at a dose of 5 mg/kg [ 82 ]. Genetic 
Optimization for Ligand Docking (GOLD) studies suggested suboptimal inter-
action between S31-201 and STAT3. To improve this interaction, several mole-
cules were subsequently developed [ 83 ,  84 ], many of which showed higher 
potency in STAT3 DNA binding inhibition assays (IC 50  = 18.7–51.9 μM) and 
disruption of STAT3–pY-peptide interactions (Ki = 15.5–41 μM). S3I-201.1066 
(or SF-1066) was the most potent in this series; it was demonstrated to directly 
bind STAT3 (K d  = 2.7 μM) and to inhibit growth of multiple cancer cell lines 
with greater potency than S3I-201 (IC 50  = 35–48 μM) [ 85 ,  86 ]. Sixteen novel 
sulfonamide analogues of SF-1066 were subsequently characterized; of these, 
BP-1-102 [ 87 ,  88 ] effectively inhibited STAT3 DNA binding (IC 50  = 6.8 μM), 
which was a 5-fold improvement over SF-1066 [ 83 ,  84 ], resulting in better cell 
growth inhibition (IC 50  = 10.9–22.7 μM). BP-1-102 was orally bioavailable and 
effectively limited growth of STAT3-dependent tumor xenografts [ 88 ]. Known 
STAT3 dimerization-disrupting small-molecules, including S3I- 201, were then 
subjected to GOLD analysis and a 3D quantitative structure-activity relation-
ship (QSAR) pharmacophore model adopted to predict optimized STAT3 inhib-
itors. This analysis identifi ed 2,6,9-trisubstituted purine scaffolds [ 89 ] as a 
promising choice of structural scaffold for projecting functionality into the 
three corners of the most important SH2-domain subpocket A, which contains 
the key pTyr705-binding residues and is composed of the polar residues Lys591, 
Ser611, Ser613 and Arg609 [ 90 ]. Select purine scaffolds, e.g. S3I-V3-31, S3I-
V3-32, S3I- V3- 33, S3I-V3-34, and S3I-V4-01, showed good affi nities ( K  D , 
0.8 − 12 μM) for purifi ed, non-phosphorylated STAT3, inhibited STAT3 DNA-
binding (IC 50  = 27 − 84 μM) and intracellular phosphorylation (IC 50  = 20 − 60 μM) 
and suppressed growth of transformed cells (IC 50  = 41 − 80 μM) with increased 
constitutive STAT3 activity [ 89 ]. Recently, another S3I-201 analog, S3I-1757, 
was described that was capable of inhibiting STAT3-pYpeptide binding 
(IC 50  = 13 μM); however, it had only modest potency for decreasing levels of 
nuclear pY-STAT3 and STAT3- DNA binding (IC 50  ≥ 50 μM) [ 86 ]. 

 A library of BP-1-102 analogues containing prodrugs, potential bioisosterses, 
and salicylic acid mimics was screened for anti-STAT3 and blood-brain barrier per-
meability properties, which identifi ed 4 inhibitors—SH4-54, SH5-07, SH5-19, and 
SH5-23. Each had nanomolar IC 50 s for inhibiting STAT3 binding to pY-peptide 
[ 91 ]. Of these, SH4-54, in which the hydroxyl substituent of the salicyclic acid 
moiety of BP-1-102 was removed and replaced with hydrogen [ 91 ], bound most 
strongly to STAT3 (K D  = 300 nM). SH4-54 also reduced levels of pY-STAT3 and its 
downstream transcriptional targets at low nM concentrations and potently targeted 
glioblastoma brain cancer stem cells (IC 50  = 0.07–0.2 μM). SH-4-54 crossed the 
blood–brain barrier, reduced pY-STAT3 levels, and controlled glioma tumor growth 
 in vivo . In a more recent study, SH4-54 and SH5-07 were tested in gliomas and 
breast cancer cells [ 92 ]. They were found to have increased ability to inhibit STAT3 
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DNA binding activity compared to BP-1-102 (IC 50  = 3.9 and 4.7 μM, respectively) 
and inhibited DNA-binding in cells at 1–3 μM; however, their ability to reduce lev-
els of pY-STAT3 in cells was much less pronounced (signifi cant reduction not 
observed below 10 μM) and did not correlate with the ability to block DNA-binding 
and/or STAT3-regulated gene expression. This lack of correlation within the context 
of constitutively-active STAT3 was explained by suggesting that disruption of pre- 
existing STAT3:STAT3 dimers, which directly leads to lower DNA-binding activity, 
has a non-linear relationship with the turnover of disrupted pY-STAT3 molecules 
and by suggesting that SH4-54 and SH5-07 could act by binding directly to the 
STAT3 DBD [ 92 ]. In fact NMR data showed that these compounds bind to both 
SH2 domain and DBD of STAT3, in the later case, most probably to a hydrophobic 
pocket formed by residues Leu411, Ile386, and Ile439 [ 92 ]. 

 Using computer-based ligand screening, our group docked 920,000 compounds 
from 8 chemical libraries into the p-Y-peptide pocket within the STAT3 SH2 domain 
and identifi ed three hits, C3, C30, and C188 [ 93 ]. C188 demonstrated the greatest 
activity of the three [ 93 – 95 ] and inhibited STAT3-pY-peptide binding in an SPR- 
based assay (IC 50  = 7.5–20 μM; calculated K i  = 37.3 nM), inhibited G-CSF- 
stimulated increased pY-STAT3 levels in Kasumi-1 cells (IC 50  = 16.2 μM) and 
induced apoptosis in pY-STAT3-high breast cancer cells (ED 50  = 0.7–3.9 μM) [ 93 , 
 94 ,  96 ]. Hit-to-lead strategies focused on C188 [ 93 – 96 ] led to C188-9, which dem-
onstrated improved potency and was non-toxic and orally bioavailable [ 95 – 98 ]. 
C188-9 binds to STAT3 with high affi nity (K D  = 4.7 ± 0.4 nM) in microscale thermo-
phoresis assays and potently inhibited STAT3 binding to its pY-peptide ligand 
(IC 50  = 2.5 μM, SPR; K i  = 12.4 nM), inhibited G-CSF-stimulated increased pY- 
STAT3 levels (IC 50  = 3.7 μM), and reduced constitutive pY-STAT3 levels 
(IC 50  ~ 4 nM) in A549 cells [ 99 ]. 

 Shin et al. searched a library of natural compounds using a STAT3-luciferase assay 
and identifi ed Cryptotanshinone as a STAT3 inhibitor. Cryptotanshinone is derived 
from the roots of  Salvia miltiorrhiza , known as Bunge or Danshen. Cryptotanshinone 
reduced levels of pY-STAT3 in HCT 116 colon cancer cells (IC 50  = 4.6 μM) and in 
breast, prostate, and cervical cancer cell lines [ 100 ]. Cryptotanshinone inhibited 
growth of multiple cancer cell lines, including myeloma, glioma, NSCLC, colorectal, 
and pancreas (IC 50  = 5.8–15.1 μM) and induced cancer cell apoptosis [ 100 – 105 ]. It 
was also found to synergize with various drugs, including imatinib and cisplatin in 
several cancers [ 103 ,  106 – 109 ]. Binding studies suggested that cryptotanshinone 
directly interacted with the STAT3 SH2 domain of STAT3 to inhibit STAT3 phospho-
tyrosylation and prevent STAT3 dimerization and nuclear translocation [ 100 ]. 

 Matsuno et al. [ 110 ] identifi ed a  N -[2-(1,3,4-oxadiazolyl)]-4 quinolinecarbox-
amide derivative, STX-0119, as a novel STAT3 dimerization inhibitor by virtual 
screening using a customized version of the DOCK4 program and the STAT3 
crystal structure. The top 136 hits identifi ed were examined in a STAT3-dependent 
luciferase reporter gene assay and a fl uorescence resonance energy transfer-based 
STAT3 dimerization assay. STX-0119 inhibited STAT3-reporter activity 
(IC 50  = 74 μM), downregulated STAT3-regulated genes, and inhibited growth of 
multiple hematological cancers (IC 50  = 1.4–18.3 μM), as well as glioblastoma cell 
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lines (IC 50  = 6.6–44.5 μM) but did not affect STAT3 phosphorylation [ 110 – 113 ]. A 
docking model of STX-0119 [ 110 ] bound to the STAT3-SH2 domain revealed that 
the 2-Ph ring of STX-0119 inserted into a hydrophobic cleft in proximity to the 
pY-peptide binding pocket. Oral administration of STX-0119 effectively abro-
gated the growth of human lymphoma and glioblastoma xenografts [ 112 ,  113 ]. 

 In another program, 437 of 7000 compounds that docked to a region of a STAT3 
distinct from STAT1 in a previous molecular dynamics simulation [ 114 ] were fur-
ther screened on the basis of favorable binding parameters involving ligand buried 
surface area (>75 %), and van der Waals and hydrogen bond energies. This resulted 
in identifi cation of 52 compounds that were tested for the ability to block STAT3 
DNA binding by EMSA [ 79 ]. Of these 52 compounds, C36 was identifi ed as the 
most potent hit (IC 50  = 30–50 μM). Subsequent library-screening using C36 as a 
template yielded another 48 structurally similar compounds. After further screening 
for STAT3 DNA binding inhibition and elimination of some leads because of low 
solubility, C48 emerged as the lead (IC 50  = 10–50 μM); it reduced constitutive pY- 
STAT3 levels, DNA binding, and transcription of STAT3 gene targets in breast can-
cer cells leading to growth inhibition and apoptosis of C3L5 murine breast cancer 
tumors in a syngeneic mouse model [ 79 ]. Site-directed mutagenesis and multiple 
biochemical experiments showed that C48 is a covalent modifi er of STAT3 and 
alkylates Cys468, a residue at the DNA-binding interface. 

 Our group used a high-throughput fl uorescence microscopy search to identify 
compounds in a drug-repositioning library (Prestwick library) that block ligand- 
induced nuclear translocation of STAT3 and identifi ed piperlongumine (PL), a natu-
ral product isolated from the fruit of the pepper  Piper longum  [ 115 ]. PL inhibited 
STAT3 nuclear translocation (IC 50  = 0.9–1.7 μM), inhibited ligand-induced 
(IC 50  = 0.9–2.7 μM) and constitutive (IC 50  = 0.4–2.8 μM) STAT3 phosphotyrosyl-
ation, and modulated STAT3-regulated genes. SPR revealed that PL directly inhib-
ited binding of STAT3 to its pY-peptide ligand (Ki 68nM). PL inhibited 
anchorage-independent growth of multiple breast cancer cell lines with increased 
levels of pY-STAT3 or total STAT3 (IC 50  = 0.9–1.7 μM), and induced apoptosis. PL 
also inhibited mammosphere formation by cancer cells in patient-derived xeno-
grafts (PDX) and its anti-cancer activity was linked to its STAT3-inhibiting activity. 
PL was non-toxic in mice up to a dose of 30 mg/kg/day for 14 days and blocked 
growth of breast cancer cell line xenografts in nude mice. 

  SH2 inhibitors identifi ed using fragment-based drug design (FBDD).  Most of the 
above molecules resulted from high-throughput screens (HTS) based on rational 
design followed by lead optimization. Using biophysical methods like NMR and 
X-ray crystallography, fragment-based drug design (FBDD) has recently emerged 
as a successful alternative to HTS-based drug discovery [ 116 – 118 ]. Several groups 
have combined structural motifs of reported STAT3 inhibitors as part of a fragment- 
based drug design (FBDD) program to develop more potent STAT3 inhibitors. 
These and other FBDD STAT3 inhibitor programs are described below. 

 The intention of one such program was to design peptidomimetics that would bind 
to the pTyr705-binding site and a side pocket within the STAT3 SH2 domain. A urea 
linker was used to form H-bonds with residues between the two sites, which are rich in 
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H-bond acceptors and donors. Ten compounds were designed and XZH-5 emerged as 
the most promising. The features of XZH-5 were: (i) a carboxylate group that mimics 
the pTyr705 phosphate group; (ii) a fl uorobenzene group able to form hydrophobic 
interactions with the side pocket; and (iii) a combination of urea and peptidyl linkers 
that spanned the right distance and were capable of forming H-bonds. XZH-5 was 
shown in a docking model to bind to the SH2 domain of STAT3 and prevent STAT3 
phosphorylation at Tyr705, leading to inhibition of downstream STAT3 activities and 
apoptosis in multiple cancer cell lines including breast, pancreatic, hepatocellular and 
rhabdomyosarcoma (IC 50  ≈ 15–50 μM) [ 119 – 121 ]. 

 Li et al. used a novel approach combining Multiple Ligand Simultaneous 
Docking (MLSD), drug scaffolds, and drug repositioning to fi nd potent STAT3 
inhibitors. Briefl y, their approach consisted of: (i) building a small library of drug 
scaffolds for the binding hot spots within the STAT3 SH2 domain; (ii) MLSD 
screening of privileged drug scaffolds to identify optimal fragment combinations; 
(iii) linking of the fragment hits to generate possible hit compounds as templates; 
and (iv) similarity searches of template compounds in drug databases [ 122 ] to iden-
tify existing drugs as possible inhibitors of STAT3. The above process successfully 
identifi ed two synthetic compounds T2 and T3 and the repositioning search yielded 
celecoxib. Each reduced the growth of HCT-116 (IC 50  = 9.0, 10.1 or 43.3 μM, 
respectively). Further lead optimization produced 5 analogues [ 123 ] that were more 
potent in inhibiting cancer cell line growth (IC 50  = 6.5 μM for a breast cancer cell 
line; 7.6 μM for pancreatic cancer cell lines). 

 Niclosamide, an FDA-approved anticestodal drug with a very low bioavailability 
in humans, was identifi ed to inhibit STAT3 activation, nuclear translocation and 
transactivation [ 124 ]. FBDD based on the structure of niclosamide and other STAT3 
inhibitors yielded a series of orally bioavailable STAT3 inhibitors including 
HJC0152 and HJC0123 [ 125 ,  126 ]. HJC0123 inhibited STAT3 activation and pro-
moter activity, growth of breast and pancreatic cancer cell lines  in vitro  (IC 50  = 0.1–
1.2 μM) and MDA-MB-231 xenografts [ 125 ] and also potentiated doxorubicin- and 
gemcitabine- mediated killing [ 119 ]. 

 More recently Yu et al. developed another STAT3 dimerization inhibitor by uti-
lizing FBDD. They linked the naphthalene-5,8-dione-1-sulphoneamide fragment of 
LLL-12 (thought to bind to the pTyr705-binding pocket within the STAT3 SH2 
domain) to a dimethyl amine that contained various R groups and generated 5 dif-
ferent compounds. LY5, the most potent compound, inhibited growth of U2OS and 
RD2 cancer cells (IC 50  = 0.5–1.39 μM) better than parent compound LLL-12; it also 
was easy to synthesize and possessed more drug-like properties than LLL-12 [ 127 ].   

5.3.5     Inhibitors Targeting the STAT3 DNA-Binding 
Domain (DBD) 

 Recognition of specifi c DNA elements is one of the cardinal features of transcrip-
tion factors (TFs). The DBD of STAT3 is known to bind two types of DNA elements 
within promoter sites to mediate its transcriptional activities—serum-inducible 

U. Bharadwaj et al.



123

elements (SIE) and gamma-activated sequences (GAS) [ 22 ,  128 ]. Concerted efforts 
at blocking this interaction have been underway for some time. The following sec-
tions describe these efforts (Table  5.3 ). 

5.3.5.1     Decoy Oligonucleotides 

 Decoy oligonucleotides are double-stranded or duplex DNAs that mimic TF pro-
moter elements. Their use was fi rst described by Bielinska et al. in 1990 as a way of 
modulating gene transcriptional activity in the cell [ 129 ]. Duplex ODNs act by com-
petitively inhibiting TF binding to their endogenous promoter elements. This strat-
egy has been used to target aberrant TF signaling in various diseases and currently 
represents an active area of research [ 130 ,  131 ]. Following successful demonstration 
of STAT6 inhibition using this method [ 132 ], Leong et al. reported the use of a 
15-mer duplex ODN modeled on the c-fos promoter sequence (SIE) to target STAT3 
[ 133 ]. They demonstrated reduction in STAT3 mediated gene expression that led to 
growth inhibition of head and neck cancer cells. Other researchers also have shown 
similar results with other STAT3-associated cancers including, ovarian cancer, gli-
oma, prostate cancer and hepatocellular carcinoma. [ 134 – 138 ]. Although duplex 
ODNs appeared to have minimal toxicity in primate models [ 139 ], instability in 
plasma was a limitation to their  in vivo  effi cacy. To overcome these limitations, the 
Grandis lab developed a cyclic STAT3 decoy ODN linked to hexa–ethylene glycol. 
This ODN showed improved stability and retained antitumor effi cacy with minimal 
toxicity when administered intravenously in a preclinical head and neck cancer mod-
els [ 140 ]. Creating a peptide nucleic acid (PNA) by adding a novel cell- penetrating 
peptide (CPP) consisting of a glutamate peptide linked to the N-terminus of the 
nuclear localization signal (NLS) from Oct6 transcription factor, to the minimal 
15-mer linear ODN 13410A (Glu-Oct6-13410A) required for inducing cell apoptosis 
[ 137 ,  141 ] showed better cell-uptake and better apoptosis inducing capacity [ 141 ].  

5.3.5.2     G-Quartet Oligonucleotides 

 G-quartet oligonucleotides (GQ-ODN) constitute another approach that is mechanis-
tically analogous to ODNs in inhibiting the transcriptional activity of STAT3. 
G-quartets oligonucleotides are random coils outside the cell that complex with K +  
ions within the cell form stable box-like structures composed of stacks of 4 G-bases 
that are hydrogen bonded via hoogensteen pairings [ 142 ]. These structures are nor-
mally found in telomeres and promoter regions of many genes. G-Quartets are known 
to associate with DNA binding proteins [ 143 ], thus, making them ideal candidates to 
be used for targeting DNA binding activity of TFs. In 2003, Jing et al. developed a 
GQ-ODN, that inhibited IL-6 induced DNA binding activity of STAT3 and suppressed 
expression of STAT3 mediated genes [ 144 ]. Subsequent work showed that GQ-ODNs 
inhibited proliferation in a wide variety of tumor cell lines, including prostrate, breast, 
head and neck, non-small cell lung cancer, and T-cell leukemia with IC 50 s ranging 
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from 5 to 7 μM [ 145 ,  146 ]. Although initial studies predicted that GQ-ODN 
destabilized dimer formation, the mechanism by which GQ-ODN disrupt and abro-
gate STAT3 activity remains unclear since subsequent work appeared to show that the 
GQ-ODN inhibited STAT3 transcriptional activity by preferentially binding to its 
DNA binding domain rather than the SH2 domain [ 147 ]. Nevertheless, it is clear that 
they show promise as targeted anti-cancer agents. GQ-ODN have not garnered as 
much interest as small molecules, perhaps due not having properties suitable for sys-
temic delivery. However, this may change as novel nucleic acid delivery systems cur-
rently being developed based upon siRNA therapeutics are employed [ 148 ].  

5.3.5.3     Platinum-Based Inhibitors 

 The antitumor effects of most platinum compounds are thought to result from their 
ability to combine with DNA and form complexes that are toxic to cells. In contrast, 
platinum IV compounds—CPA-1, CPA-7, and platinum (IV) tetra-chloride, were 
shown to inhibit STAT3 DNA binding activity in an EMSA assay [ 149 ]. Importantly, 
IS3 295, a member of the same group identifi ed from a screen of the NCI 2000 
diversity set of compounds, was reported to bind STAT3 and prevent its interaction 
with specifi c DNA response elements in a dose dependent manner with an IC 50  of 
1.4 μM [ 150 ]. All platinum IV compounds mentioned here preferentially inhibit 
STAT3 and to some extend STAT1 DNA binding, but showed no activity against 
STAT5 DNA binding, reducing the possibility that this is a nonspecifi c DNA target-
ing effect. The compound suppressed STAT3 dependent gene activation and showed 
antiproliferative effects against v-Src transformed fi broblast and a variety of breast 
cancer cells. Of note, CPA-7 also was recently shown to be effective against both 
gliomas and melanomas in mouse tumor models [ 151 ]. Biochemical data also sug-
gests that inhibition of DNA binding by IS3 295 is irreversible, which is not surpris-
ing because platinum compounds are known to react with thiol groups [ 152 ]. The 
fact that IS3 295 is selective for STAT3 over STAT5 suggests that covalent modifi -
cation involves a unique site within STAT3 to which the compounds fi rst binds 
non- covalently prior to crosslinking. It is important to note that this kind of selectiv-
ity implies a “hotspot” within the DNA binding domain [ 153 ]. It would therefore be 
interesting to pinpoint the reactive thiol groups at the DNA interface. This could 
yield important information that would help drive the development of other com-
pounds directed at STAT3 DNA binding. It remains to be seen what proteins other 
than STAT3 this class of compounds also targets in order to better assess the possi-
bility of unacceptable levels of off-target effects.  

5.3.5.4     Small Molecule Targeting 

 In contrast to the SH2 binding domain, which presents a well-defi ned pY binding 
site that is amenable to targeted small-molecule inhibition, the DNA binding 
domain has historically been considered challenging, partly due to the belief that 
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disrupting DNA binding would not achieve the desired level of selectivity neces-
sary to discriminate among TFs. In addition, protein DNA interactions of TFs were 
conventionally deemed undruggable due to the lack of obvious targetable pockets 
within their binding interfaces. Using high quality structural data of the DBD of 
STAT3 [ 43 ], Huang et al. applied an improved virtual ligand screen to identify a 
small molecule called InS3-54 (4-[(3E)-3-[(4-nitrophenyl)-methylidene]-2-oxo-5- 
phenylpyrrol-1-yl] benzoic acid) that non-covalently binds to the DBD of STAT3, 
thereby competitively inhibiting its DNA-binding activity [ 154 ]. To ensure selec-
tivity towards STAT3, top scoring molecules from the initial screen were docked 
on to the DBD of STAT1. InS3-54 was selected as the most selective compounds 
that had the ability to inhibit STAT3 dependent gene expression in a luciferase 
reporter assay. In addition, InS3-54 was demonstrated to inhibit DNA binding of 
pY-STAT3 dimer (IC 50  = 20 μM) by non-covalently binding to the DBD of STAT3. 
Although effi cacious in inhibiting proliferation of various cancer cell lines, the 
IC 50  (<6 μM) was markedly lower than that for its inhibition of DNA binding, 
which suggested the possibility of off-target effects. To address this issue, Zhan’s 
group made further activity guided hit-to-lead optimizations that resulted in InS3-
54A18, a compound that showed improved IC 50  for growth inhibition, better speci-
fi city, and more favorable pharmacological properties [ 155 ]. When orally 
administered, inS3-54A18 effectively inhibited STAT3 activity in mice leading to 
a reduction in lung xenograft tumor growth. 

 Another example of a small molecule presumed to work by the directly targeting 
the STAT3 DBD is a synthetic analog of curcumin, HO-3867, that has been shown 
to inhibit DNA binding activity in an ELISA assay [ 156 ]. HO-3867 inhibited STAT3 
transcriptional activity, was preferentially active in a dose dependent manner in 
inhibiting growth of cancer vs. normal cell lines, and inhibited xenograft tumor 
growth. However, this compound appears to have minimal selectivity and was 
shown to inhibit upstream kinases [ 157 ,  158 ]. To advance further, the specifi city of 
HO-3867 likely will need to be improved. 

 Galiellalactone, a fungal metabolite from the ascomycete,  Galiella rufa , inhib-
ited the IL-6/STAT3 signaling pathway [ 159 ,  160 ]. Galiellalactone inhibited STAT3- 
mediated luciferase induction (IC 50  ~ 5 μM), reduced STAT3-regulated gene 
induction, and blocked the growth of various cancer cell lines e.g. DU145,  in vitro  
(IC 50  = 3.4 μM) and  in vivo  [ 160 – 162 ]. Galiellalactone did not prevent dimerization 
of the STAT3 monomers and showed no signifi cant inhibition of phosphorylation; it 
appears to mediate its STAT3 inhibitory effect by covalently modifying residues 
Cys-367, Cys-468, and Cys-542 in the DBD and directly blocking the binding of 
STAT3 to DNA [ 162 ].  

5.3.5.5     Peptides and Aptamers 

 Like STAT3 SH2-directed aptamers, DBD-directed peptide aptamer DBD-1 and its 
protein transduction domain (PTD)-fused analog, DBD-1-9R could also target 
STAT3 and reduce growth of STAT3-dependent cells [ 163 ].   
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5.3.6     Inhibitors Targeting the STAT3 N-Terminal Domain 

 Although tyrosine phosphorylation precedes STAT3 activation, it has been shown that 
even nonphosphorylated STAT3 contributes to carcinogenesis through regulation of 
gene expression [ 164 – 166 ]. In addition, protein–protein interactions between STAT3 
and other transcription factors also can affect the repertoire of transcribed genes and 
contribute to tumorigenesis [ 167 ]. The N-terminal domain mediates protein–protein 
interactions during binding of STAT3 dimers to DNA and in the assembly of the tran-
scriptional machinery, including the interactions between two STAT3 dimers to form 
a tetramer, as well as with other transcriptional factors and regulators [ 43 ,  168 ,  169 ]. 
The N-terminal domain interaction with other transcription factors/cofactors leads to 
formation of enchanceosomes [ 170 ] and its interaction with histone-modifi er proteins 
induces changes in chromatin structure [ 171 ]. These complex interactions together 
maximize STAT3-dependent transcriptional control in normal and cancer cells [ 167 ]. 
Moreover, the NTD also has been implicated in the interaction of STAT3 with peptide 
hormone receptors and the nuclear translocation of STAT3 [ 172 – 174 ]. Short peptides 
(Table  5.3 ) derived from helices within the N-terminal domain, especially helix-2 
(ST3-H2A2), recognized and bound to STAT3, but not to other STAT members, and 
inhibited STAT3 transcriptional activity without affecting levels of pY-STAT3 [ 169 , 
 175 ,  176 ]. The cell-permeable form of this peptide (Hel2K-Pen), generated by its 
fusion with Penetratin (a protein transduction motif with sequence RQIKIWFPNRR-
Nle-KWKK-NH2), selectively induced cell growth inhibition and apoptosis of human 
MDA-MB-231, MDA-MB-435, and MCF-7 breast cancer cells (IC 50  ~ 10 μM) 
through robust induction of pro-apoptotic genes, as a result of altered STAT3 chroma-
tin binding [ 175 – 177 ]. Issues of peptide stability and bioavailability still remain major 
challenges to be overcome for this unique approach to STAT3 inhibition to advance.  

5.3.7     Inhibitors that Target Endogenous STAT3 Negative 
Regulators 

 In normal cells, the level and duration of STAT3 activation is controlled by a variety 
of mechanisms including dephosphorylation of receptor complexes and nuclear 
STAT3 dimers by protein phosphatases (PTPases), interaction of activated STAT3 
with members of the protein inhibitors of activated STAT (PIAS) family, and the 
actions of suppressor of cytokine signaling (SOCS) protein members that inhibit 
and/or degrade JAKs [ 178 ,  179 ]. Many different STAT3 inhibitors seem to work 
through modulating the activity of these endogenous regulators (Table  5.4 ).  

 Several protein tyrosine phosphatases, including members of the Src homology 2 
(SH2)-domain containing tyrosine phosphatase family (SHP-1 and SHP-2) and pro-
tein tyrosine phosphatase 1B (PTP-1B) [ 180 – 182 ] can deactivate STAT3 signaling 
through direct dephosphorylation of pY-STAT3, thus, are useful targets [ 183 ]. In 
many cancer cells, loss of regulation by these, lead to constitutive STAT3 activation, 
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e.g. loss of SHP-1 enhances JAK3/STAT3 signaling in ALK-positive anaplastic 
large-cell lymphoma and in cutaneous T cell lymphoma [ 184 ,  185 ]. Many chemical 
agents also appear to up regulate SHP-1 activity/expression. As shown in Table  5.4 , 
sorafenib derivatives lacking Raf-1 kinase activity, e.g. SC-1, SC-43, and SC-49 
[ 186 – 189 ], appear to reduce levels of constitutive pY-STAT3 (IC 50  = 1–5 μM) by 
upregulation of SHP1 leading to inhibition of cancer cell growth  in vitro  (IC 50  = 2–5 μM) 
and inhibition of xenografts growth in mice. Many other known JAK/STAT3 inhibi-
tors e.g. betulinic acid [ 190 ], guggulsterone [ 191 ], 5-azacytidine [ 192 ], SC-2001 
[ 193 ], sorafenib [ 194 ], beta-caryophyllene [ 195 ], boswellic acid [ 196 ], capillarisin 
[ 197 ]. Honokiol [ 198 ], dovitinib [ 199 ], 1′-acetoxychavicol [ 200 ], gambogic acid 
[ 201 ], dihydroxypentamethoxyfl avone [ 202 ], butein [ 203 ], icariside II (a fl avonoid 
icariin derivative) [ 204 ] and 5-hydroxy-2-methyl-1,4- naphthoquinone (a vitamin K3 
analogue) [ 205 ] can enhance the SHP-1 pathway (either by induction of SHP-1 
expression or by increase of SHP-1 activity) and show anti-cancer potential. 

 Adenovirus mediated transduction of the SOCS3 gene also can reduce levels of 
pY-STAT3 and thereby reduce SW620 and BEL704 xenograft growth [ 206 ,  207 ]. 
Other known negative STAT3-regulators also could be modulated in a similar way 
to reduce STAT3 activity. 

 Woetmann et al. [ 208 ] showed that calyculin A, an inhibitor of serine phospha-
tases and the protein phosphatases (PPs) PP1yPP2A, induces (i) phosphorylation of 
STAT3 on serine and threonine residues, (ii) inhibition of STAT3 tyrosine phos-
phorylation and DNA binding activity, and (iii) relocation of STAT3 from the 
nucleus to the cytoplasm. Similar results were obtained with other PP2A inhibitors 
(okadaic acid and endothall thioanhydride) but not with inhibitors of PP1 (tautomy-
cin) or PP2B (cyclosporine). There are other reports of a similar inhibition of STAT3 
activity by calyculin A [ 209 ,  210 ] but observations with some of the other PP2A 
inhibitors [ 209 ] could not be repeated. 

 STAT3 activity is, in part, positively regulated by c-Src and negatively regulated 
by a PKC-activated PTPase(s) in melanoma cells. The tumor-promoting phorbol 
ester 12-O-tetradecanoylphorbol-13-acetate (TPA) was shown to inhibit melanoma 
cell growth by suppression of STAT3 activity through upregulation of PTPase(s) 
and upregulation of PKC [ 211 ], which led to a decrease in STAT3 DNA-binding, 
STAT3 target gene transcription, and inhibition of growth of melanoma cells [ 211 ].  

5.3.8     Inhibitors with Other Mechanisms of Action 

 There are numerous examples of agents (Table  5.4 ) that inhibit STAT3 activity/
oncogenic function, that do not necessarily belong to any of the above groups of 
indirect or direct STAT3-interacting compounds. These will be discussed in this 
section. 
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5.3.8.1     siRNA-Based Inhibitors 

 Apart from the ODNs, which block the ability of STAT3 DBD to bind the STAT3- 
responsive sequence containing DNA, there also have been concerted efforts at 
targeting STAT3 mRNA using siRNA and shRNA based methods as outlined 
below. 

  Anti-sense therapy.  Many antisense oligonucleotide (ASO)-based drugs, which 
bind to messenger RNA (mRNAs) and inhibit the production of disease-causing 
proteins, are at various phases of clinical trials. An ASO complementary to apoli-
poprotein B-100 mRNA, mipomersen sodium (Kynamro), received FDA approval 
in January 2013 as an adjunct to statin-based lipid lowering therapy [ 212 ,  213 ]. 
AZD9150 (ISIS-STAT3Rx or ISIS 481464) is a synthetic ASO against STAT3. 
Information about its pre-clinical development is scant but its testing in clinical 
trials is summarized below.   RNA interference (RNAi) is a natural post-transcrip-
tional gene-silencing (PTGS) mechanism for silencing unwanted genes. The pro-
cess is initiated by the presence of double-stranded RNA, not a constituent of the 
normal cell cytoplasm. The dsRNAs are cleaved by dicer, an endonuclease, into 
20–25 nucleotide dsRNAs, referred to as short or small interfering RNAs (siR-
NAs). The RNA-induced silencing complex (RISC) separates the two strands, 
and one of these strands then serves as a guide for sequence-specifi c degradation 
of complementary mRNA. The utility of this approach is limited due to the short 
half-life of transfected RNAs. This problem can be circumvented using a DNA-
directed RNA interference technique in which a short hairpin RNA (shRNA, a 
double stranded RNA) is expressed in the cell after insertion of a DNA construct 
into the nucleus. These shRNAs then enter the RNAi pathway and gene silencing 
can last for as long as the cell continues to produce the shRNA [ 214 ,  215 ]. This 
strategy is under evaluation in several clinical trials for the treatment of several 
diseases including cancers (#NCT01591356, #NCT00363714, #NCT00689065, 
#NCT00938574). However, data regarding siRNA targeted silencing of STAT 
genes for cancer therapy are limited to  in vitro  studies and  in vivo  studies of ani-
mal models only [ 216 – 224 ]. 

 Intracellular therapeutic targets that defi ne tumor immunosuppression in both 
tumor cells and T cells remain intractable [ 225 ]. Administration of a covalently 
linked siRNA to an aptamer (apt) that selectively binds cytotoxic T lymphocyte-
associated antigen 4 [CTLA4(apt)] allowed gene silencing in exhausted CD8 +  T 
cells and Tregs in tumors as well as CTLA4-expressing malignant T cells [ 225 ]. 
CTLA4(apt) fused to a STAT3-targeting siRNA [CTLA4(apt)-STAT3 siRNA] 
resulted in internalization into tumor-associated CD8 +  T cells overexpressing 
CTLA-4 [ 226 ] and silencing of STAT3, which activated tumor antigen-specifi c T 
cells in murine models [ 225 ]. Both local and systemic administration of 
CTLA4(apt)-STAT3 siRNA dramatically reduced tumor-associated Tregs and 
potently inhibited tumor growth and metastasis in various mouse tumor models 
[ 225 ].  
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5.3.8.2     Inhibitors Targeting Nuclear Translocation 

 The role of activated STAT3 as a DNA-binding transcription factor relies on the 
ability of homodimers to traffi c from the cytoplasm to the nucleus [ 178 ,  227 – 231 ]. 
Preventing this shuttle of STAT3 dimers could be a way to block STAT3 activity 
[ 229 ]. Importins α3, α5, α7, and β, are involved in passage of STAT3 through the 
nuclear pore [ 26 ,  229 ]. Once within the nucleus, TC45 dephosphorylates pY-STAT3, 
which then becomes a substrate for exportin-1–mediated export [ 229 ]. Inhibition of 
exportin 1 by leptomycin B or ratjadone A, has been shown to interfere with nuclear 
export of STAT3; it reduces pY-STAT3 and STAT3-mediated transcription and 
causes cells to undergo apoptosis [ 229 ]. Although interesting, any small- molecule 
that inhibits general traffi cking across the nuclear membrane is likely to be toxic 
[ 229 ]. Whether an inhibitor of nuclear pore transit can be developed with suffi cient 
STAT3 selectivity remains to be determined.  

5.3.8.3     Inhibitor with Novel Modes of Action 

 There are a few inhibitors, which have very novel mechanisms of action, mostly by 
way of modulating proteins or pathways indirectly regulating the STAT3 signaling 
pathway (Table  5.4 ). E.g. capsaicin has been shown to have anti-carcinogenic 
effects on various tumor cells through multiple mechanisms including STAT3 inhi-
bition [ 232 – 234 ]. Lee et al. showed that capsaicin treatment of glial tumors induced 
downregulation of the IL-6 receptor gp130 by translation inhibition, and was asso-
ciated with activation of endoplasmic reticulum (ER) stress [ 235 ]. The depletion of 
the intracellular pool of gp130 by capsaicin combined with the ER stress inducer led 
to an immediate loss of the IL-6 response due to short half-life of membrane- 
localized gp130 [ 235 ]. 

 Platelet factor 4 (PF4) is an angiostatic chemokine that suppresses tumor growth 
and metastasis and is frequently lost in multiple myeloma. Exogenous PF4 treatment 
not only suppressed myeloma-associated angiogenesis, but also inhibited growth and 
induced apoptosis in myeloma cells. It has been shown that PF4 negatively regulated 
STAT3 by inhibiting its phosphorylation and transcriptional activity. Overexpression 
of constitutively activated STAT3 could rescue PF4-induced apoptotic effects. 
Furthermore, PF4 induced the expression of SOCS3, an endogenous STAT3 inhibi-
tor, and gene silencing of SOCS3 abolished its ability to inhibit STAT3 activation, 
suggesting a critical role of SOCS3 in PF4-induced STAT3 inhibition.  

5.3.8.4     Other Inhibitors that May Act by Targeting STAT3 

 There are numerous reports of various compounds, most naturally occurring, that 
are known to exert powerful anti-tumor effects, through their action on STAT3. 
However, the mechanistic basis for their anti-STAT3 action is unknown. Some 
examples are protoepigenone/RY10-4 [ 236 ], shikonin [ 237 ], paclitaxel [ 238 – 240 ], 
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vinrelbin [ 238 – 240 ], nifuroxazide [ 241 ], icaritin [ 242 – 245 ], and epigallocatechin-3 
[ 246 ]. These are potent inhibitors that can reduce STAT3 activation and induce 
growth inhibition and/or apoptosis and in many cases have been proven, in pre- 
clinical animal models to reduce tumor growth. Further studies are necessary to 
elucidate their exact mechanism of action. 

 In considering this group of compounds, as well as others listed above, it is 
important to recall that proteases play an important role in STAT3 biochemistry, 
including its posttranslational modulation [ 247 ,  248 ] and degradation. STAT3 pro-
teases include caspases, calpain, and the proteasome complex. Many compounds 
induce cell cycle arrest and apoptosis accompanied by reduced pY-STAT3 levels. It 
is frequently concluded that these compounds target STAT3 but the precise mecha-
nism of STAT3 targeting is not determined. A number of compounds proposed as 
STAT3 inhibitors exert their antitumor effects by promoting STAT3 protein degra-
dation in cancer cells [ 249 – 251 ]. In addition, pY-STAT3 has been shown to undergo 
caspase-dependent proteolytic cleavage [ 252 ]. Because cysteine proteases, such as 
caspases and calpain, are well known intracellular effectors of apoptosis, the ability 
of some purported STAT3 inhibitors to reduce pY-STAT may not be due to direct 
targeting of STAT3, but rather a refl ection of compound-induced apoptosis in which 
pY-STAT3 levels are reduced by effector proteases within the apoptosis pathway.   

5.3.9     Allosteric Effects of STAT3 Inhibitors 

 Namanja et al. [ 253 ] found that pY-peptide interactions with the SH2 domain of 
STAT3 cause structural and dynamics changes in its LD and DBD. This inter- 
domain allosteric effect likely is mediated by the fl exibility within the hydrophobic 
core of STAT3. In addition, a mutation (I568F) in the LD, identifi ed in a patient with 
autosomal-dominant hyper IgE syndrome (AD-HIES) induced NMR chemical shift 
perturbations in the SH2 domain, the DBD and the CCD domain of STAT3, sug-
gesting conformational changes in these domains mediated by a point mutation in a 
separate domain. Furthermore, they showed that the conformational changes in the 
SH2 domain seen in the mSTAT3 I568F mutant was accompanied by the reduced 
affi nity of this mSTAT3 for pY-peptide. This effect may help explain the ability of 
some compounds that bind domains other than the SH2 domain to affect STAT3- 
pY- peptide binding. The recent paper by Mathew et al. [ 254 ] using a rhodium-(II)-
catalyzed, proximity-driven modifi cation approach identifi ed the STAT3 coiled-coil 
domain (CCD) as a novel binding site for a newly described naphthalene sulfon-
amide inhibitor, MM-206. Despite binding to the CCD, this compound reduces 
STAT3 binding to pY-peptide and has structural features of C188, previously shown 
to reduce STAT3 binding to pY-peptide [ 93 ,  94 ,  96 ], and BP-1-102, thought to bind 
to the STAT3 SH2 domain. Findings with MM-206 [ 254 ] and STAT3 proteins con-
taining substitutions within the CCD, such as Asp170 [ 174 ], suggest that the CCD, 
like the LD, also may engage in interdomain allosteric effects. Based on these fi nd-
ings, one might need to reconsider notions about how STAT3 inhibitors 
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demonstrated to bind to STAT3 and to reduce STAT3 activity actually mediate their 
effects and may change our approach to designing drugs to target this oncogene. 
The fact that selectivity and mechanisms of action of established STAT3 inhibitors 
continue to be revisited and clarifi ed [ 255 ,  256 ] reinforces this concept.   

5.4     Entry of STAT3 Inhibitors into the Clinic 

 Attempts to develop peptide inhibitors [ 25 ,  44 ,  45 ,  51 ,  257 ] that target the pY- 
peptide binding pocket within the STAT SH2 domain [ 45 ] quickly followed the 
elucidation of the crystal structure of STAT3β homodimer [ 43 ] and confi rmation 
that STAT3 was an oncoprotein [ 8 ]. However, due to their lack of membrane perme-
ability and stability, non-peptidic small molecule inhibitors of STAT3 moved to the 
forefront of this drug discovery area [ 61 ]. Although showing promising pre-clinical 
activity  in vivo , many compounds in this category show activity in the medium-to- 
high micromolar range, indicating the need for additional optimization before tran-
sitioning to clinical trials involving systemic administration. STA-21 has completed 
phase I/II trials in patients with psoriasis [ 258 ] with effective concentrations being 
achieved at affected skin sites through topical application. Several agents that sys-
temically target the IL-6R/JAK/STAT3 signaling pathway are at various stages of 
clinical trials (Table  5.5 ) for a cancer indication. STAT3 upstream antagonists 
include the IL-6-neutralizing MAb siltuximab [ 259 ], the IL6R-anatgonist MAb 
tocilizumab [ 260 ,  261 ], the JAK inhibitor ruxolitinib [ 262 – 268 ], AZD1480 [ 41 , 
 269 – 272 ], OPB-31121 [ 273 – 278 ], fedratinib/SAR302503 [ 279 – 282 ], BSE-SFN 
[ 283 ], pacritinib/SB1518 [ 284 ,  285 ], and the dual JAK2/gp130 inhibitors WP1066 
[ 286 – 290 ] and OPB-51602 [ 291 ]. Direct STAT3 inhibitors include the STAT3- 
decoys [ 292 ] and the STAT3-antisense oligonucleotide based inhibitor ISIS- 
STAT3Rx (AZD9150) [ 293 ]. The third group of compounds includes two 
re-purposed drugs that also inhibit STAT3—the antiparasitic drug pyrimethamine 
[ 283 ] and the HMG-CoA inhibitor Simvastatin [ 294 – 296 ].

   The importance of the IL-6/JAK/STAT signaling pathway in many human malig-
nancies has, in part, spurred development of several IL-6 and IL-6 receptor inhibitors 
for cancer treatment [ 297 – 299 ]. Siltuximab (CNTO 328), the chimeric anti-IL-6 
MAb has been approved by the FDA in 2014 for the treatment of patients with HIV-
negative and HHV-8-negative multicentric Castleman’s disease (MCD), a lymphop-
roliferative disorder with germinal center hyperplasia and high morbidity, at a dose 
of 11 mg/kg every 3 weeks [ 259 ,  300 ]. In a Phase I study, 18 of 23 patients (78 %) 
had complete response, and 12 patients (52 %) demonstrated objective tumor 
response [ 301 ]. In a Phase II study, with HIV-negative and HHV-8-seronegative 
patients with symptomatic MCD (n = 140), durable tumor and symptomatic responses 
occurred in 18 of 53 patients (34 %) in the siltuximab group and none of 26 in the 
placebo group [ 302 ]. A Japanese Phase 1 trial [ 303 ] in multiple myeloma patients 
showed some responses, but in other studies the 11 mg/kg dose did not improve 
progression-free survival or achieve other measures of response [ 259 ]. Out of the 16 
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studies undertaken in various cancers with this agent, six have been completed, fi ve 
are still ongoing, and fi ve have been either terminated or withdrawn because of lack 
of effi cacy. IL-6 signaling inhibition using the IL-6R monoclonal antibody, tocili-
zumab, has shown promising results in rheumatoid arthritis and related diseases in 
approximately 230 trials [ 304 ] and is being evaluated in patients with cancers, 
including multiple myeloma, both as an anti-myeloma therapy and as a method to 
reduce GvHD after allogeneic stem cell transplant (SCT), as well as in recurrent 
ovarian cancer as adjuvant with carboplatin/doxorubicin [ 260 ,  261 ]. Preliminary 
analysis of the ongoing trial shows that immune reconstitution was preserved in 
recipients of tocilizumab and there was a reduced incidence of grade 2–4 acute 
GvHD [ 261 ]. A completed phase I trial combining carboplatin/doxorubicin with 
tocilizumab and IFNα2b in patients with recurrent epithelial ovarian cancer (EOC) 
revealed that functional IL-6R blockade is feasible and safe in EOC patients treated 
with carboplatin/doxorubicin, using 8 mg/kg tocilizumab [ 260 ], and the combination 
was recommended for phase II evaluation based on immune parameters. 

 Approximately 50 trials with the JAK inhibitor, ruxolitinib, in many different 
cancer indications are underway and a few completed ones show some encouraging 
results in myelofi brosis [ 305 ], but toxicity remains an issue. In phase III clinical stud-
ies, ruxolitinib provided rapid and durable improvement of myelofi brosis- related 
splenomegaly and symptoms irrespective of mutation status, and was associated 
with a survival advantage compared with placebo or best available therapy. But 
because of dose-dependent cytopenias, blood count monitoring and dose titrations 
were recommended [ 266 ]. The JAK2 mutation (c.1849G > T; p.V617F) causes con-
stitutive activation of Janus kinase (JAK)2 and dysregulated JAK signaling in myelo-
fi brosis (MF), polycythemia vera (PV), and essential thrombocythemia (ET). 
Interestingly, in the phase III Controlled Myelofi brosis Study, patients with MF not 
only achieved signifi cant reductions in splenomegaly and improvements in symp-
toms with ruxolitinib vs. placebo but 26/236 patients carrying the allele, also had 
their mutation burden lowered [ 306 ]; 20 achieved partial and 6 achieved complete 
molecular responses, with median times to response of 22.2 and 27.5 months [ 306 ]. 
The phase I study [ 41 ] with AZD1480, a JAK inhibitor, in 38 patients with advanced 
solid tumors, revealed rapid absorption and elimination with minimal accumulation 
after repeated daily or twice daily dosing. Pharmacodynamic analysis of circulating 
granulocytes demonstrated maximal reduction of pY-STAT3 within 1–2 h after dose, 
coincident with C max , and greater reduction at higher doses. The average reduction in 
pY-STAT3 levels in granulocytes at the highest dose tested (70 mg daily), was 56 % 
at steady-state drug levels. Dose-limiting toxicities (DLTs) included pleiotropic neu-
rologic adverse events (AEs), like dizziness, anxiety, ataxia, memory loss, hallucina-
tions, and behavior changes. The trial had to be stopped because of toxicity. 

 Another JAK inhibitor that showed the best potency in pre-clinical studies, OPB- 
31121 [ 274 – 276 ], demonstrated insuffi cient antitumor activity in patients with 
hepatocellular carcinoma (HCC) in a clinical trial [ 273 ]. In an open-label, 
 dose- escalation, and pharmacokinetic study of OPB-31121 in subjects with 
advanced solid tumor observed that twice-daily administration of OPB-31121 was 
feasible up to doses of 300 mg. The pharmacokinetic profi le, however, was unfavor-
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able and no objective responses were observed [ 273 ]. A similar study in advanced 
HCC also came up with the same result [ 273 ]. Furthermore, peripheral nervous 
system-related toxicities were experienced, which may limit long-term administra-
tion of OPB- 31121 [ 273 ]. 

 A very recent interventional study will evaluate the effect of sulforaphane from 
broccoli sprout extract (BSE-SFN) as a candidate natural chemopreventive agent 
which is known to modulate key steps in melanoma progression and STAT3 medi-
ated gene transcription [ 307 ,  308 ] in melanocytic and stromal elements of 18 mela-
noma patients with at least two atypical nevi of ≥4 mm diameter and those who 
have not received any form of systemic antineoplastic treatment for melanoma 
within the last year before recruitment, The primary outcomes that will be measured 
are (i) adverse events associated with oral sulforaphane, (ii) visual changes of atypi-
cal nevi size, border and color and (iii) the cellular changes. 

 Another new trial examines the safety and effi cacy of the JAK2 inhibitor, pacri-
tinib, for patients with AML in combination with either decitabine or cytarabine. 
Pacritinib has been shown to work through inhibition of STAT3 and STAT5 [ 284 ]. 
Pacritinib is an active agent in patients with myelofi brosis (MF), offering a potential 
treatment option for patients with preexisting anemia and thrombocytopenia. It 
demonstrated a favorable safety profi le with promising effi cacy in phase I studies in 
patients with primary and secondary MF. A subsequent multicenter phase II study 
demonstrated effi cacy [ 285 ]. Out of 26 evaluable patients who either had clinical 
splenomegaly poorly controlled with standard therapies or were newly diagnosed 
with intermediate- or high-risk Lille score, 8 patients (31 %) achieved a ≥35 % 
decrease in spleen volume (MRI) and 42 % on the whole attained a ≥50 % reduction 
in spleen size by physical examination. Grade 1 or 2 diarrhea (69 %) and nausea 
(49 %) were the most common treatment-emergent adverse events. The study drug 
was discontinued in 9 patients (26 %) due to adverse events (4 severe). 

 STAT3-decoy oligonucleotides (ODN) targeting the STAT3 DBD [ 292 ] and 
STAT3 siRNA based formulations [ 293 ] are the only direct STAT3 inhibitors that 
are in clinical trial for a cancer indication. Expression levels of STAT3 target genes 
were decreased in head and neck cancer patients following intratumoral injection 
with the STAT3 decoy compared with tumors receiving saline control in a phase 0 
trial [ 292 ]. While intratumoral administration clearly shows target inhibition, it 
should be noted that there is no clear evidence that the same level of effi cacy would 
be attained if the ODN were systemically administered. Therefore, it would be 
interesting to assess the effectiveness of this and the subsequent cyclic ODNs, on 
tumor STAT3 activity when delivered systemically in patients. Considering that 
effective and safe systemic intracellular delivery remains a challenge in this fi eld it 
appears that there still remain some obstacles that have to be overcome before 
ODNs realize their full clinical potential as STAT3-targeting therapeutic agents. 

 STAT3 antisense based AZD9150 (ISIS-STAT3Rx) showed single-agent antitu-
mor activity in patients with highly treatment-refractory lymphoma and NSCLC in 
a phase 1 dose escalation study. Of the 25 patients enrolled (12 advanced lym-
phoma; 7 with DLBCL, 2 Hodgkin’s lymphoma, 2 follicular non-Hodgkin’s lym-
phoma, 1 mantle cell lymphoma), 44 % (11/25) achieved stable disease (SD) or a 

5 STAT3 Inhibitors in Cancer: A Comprehensive Update



138

partial response (PR); three of six patients (50 %) with treatment-refractory DLBCL 
had evidence of tumor shrinkage and two patients (33 %) achieved a confi rmed 
durable PR [ 293 ]. The only NSCLC patient evaluated showed evidence of near- 
complete resolution of highly treatment refractory NSCLC liver metastasis upon 
fi rst restaging, with additional stabilization of mediastinal lymph nodes in response 
to AZD9150 treatment (3 mg/kg) [ 293 ]. The maximum tolerated dose (MTD) of 
AZD9150 was determined to be 3 mg/kg. A rapidly evolving thrombocytopenia (in 
the fi rst month of dosing) was observed in two of nine patients at 4 mg/kg and was 
considered the dose-limiting toxicity (DLT). A more chronic slowly progressing 
thrombocytopenia also occurred after 4–6 months of dosing at 2 and 3 mg/kg (and 
for most patients at 4 mg/kg) and was effectively managed with pauses and dose 
frequency adjustments. The slowly progressing thrombocytopenia seen in patients 
at or below the MTD is consistent with the reported role of STAT3 in megakaryo-
poiesis [ 309 ,  310 ], whereas the rapidly progressing thrombocytopenia seen above 
the MTD was of uncertain etiology. Other drug-related adverse events included 
aspartate aminotransferase (AST) elevation (44 %), alanine aminotransferase (ALT) 
elevation (44 %). Responses have also been seen in the DLBCL study. Dose escala-
tion continues in the HCC study and knockdown of STAT3 in peripheral blood 
mononuclear cells (PBMCs) has been shown. IONIS-STAT3Rx, a variant of 
AZD9150 is also being examined for safety in patients with advanced cancers. 

 Tumor-induced STAT3 generates an immunosuppressive microenvironment 
and, therefore, has become a promising target for cancer therapy. Based on this 
premise, an ongoing clinical trial is investigating the effects of the antiparasitic 
drug, pyrimethamine, an inhibitor of STAT3 [ 283 ], in chronic lymphocytic leuke-
mia (CLL) patients. Interestingly, pyrimethamine does not affect STAT3 phosphor-
ylation [ 283 ] but does affect transcription of STAT3 gene targets. 

 Another re-purposed STAT3-inhibitor, simvastatin, an inhibitor of 3-hydroxy- 3-
methylglutaryl-coenzyme A (HMG-CoA) [ 294 – 296 ] is being tested in a phase I 
trial in combination with topotecan and cyclophosphamide for refractory and/or 
relapsed solid or CNS tumors of childhood. HMG-CoA reductase inhibitors, or 
“statins”, lower LDL (low density lipoprotein) cholesterol by inhibiting cholesterol 
biosynthesis. Statins also have been found to decrease the incidence of cancer [ 311 , 
 312 ]. Statins have been shown to inhibit IL-6 mediated STAT3 activation and pre-
vent recruitment of pro-infl ammatory cells to injured heart tissue [ 313 ]. 

 In conclusion, most of the inhibitors in trial, which target STAT3 in various can-
cer indications, belong to the upstream and repurposed inhibitors groups. None of 
the direct small-molecule STAT3 inhibitors under development has entered clinical 
trials. Since the pharmacokinetic properties of many of these are not well elabo-
rated, it is diffi cult to comment on their preparedness to go to the clinics. The most 
promising in this regard is C188-9. Pharmacokinetic (PK) and toxicity studies in 
mice, rats, and dogs demonstrated that C188-9 provides excellent plasma exposures 
following oral administration and revealed no toxicity detectable by gross, 
 microscopic or clinical laboratory evaluations when administered up to a dose of 
100 mg/kg/day for 28 days in dogs, and up to a dose of 200 mg/kg/day for 28 days 
in rats [ 96 ]. Tumor PK studies of C188-9 in mice at 10 mg/kg demonstrated tumor 
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levels twice those of plasma levels and nearly 3 times the IC 50  for pSTAT3 inhibition 
[ 96 ]. C188-9 inhibits growth and survival of many types of cancer cells  in vitro , 
including AML [ 95 ,  97 ], NSCLC [ 99 ], breast cancer (Dobrolecki et al. 2016, manu-
script in preparation), and HNSCC [ 96 ] and inhibits the growth of NSCLC and 
HNSCC xenografts  in vivo  [ 96 ,  99 ].  

5.5     Conclusion 

 Due to the essential contributions of STAT3 to virtually all the hallmarks of cancer, 
numerous approaches have been applied to identify molecules that effectively block 
STAT3 signaling to treat and/or prevent cancer, including peptidomimicry,  de novo  
rational design, screening chemical libraries  in silico  and  in vitro , and FBDD. Despite 
these efforts, few specifi c and selective STAT3 inhibitors with optimal anti-STAT3 
activity have garnered the requisite pharmacokinetic and pharmacodynamic creden-
tials to proceed to clinical trials. Some authors have stated that, unlike small enzy-
matic clefts, the STAT3:STAT3 dimer represents a protein-protein interaction that 
involves too large a surface area [ 86 ] to be effectively targeted by small, drug-like 
molecules [ 314 ]. These interaction surfaces and others involved in STAT3 protein- 
protein and protein-DNA interaction also are shallow and relatively featureless, as 
opposed to the well-defi ned binding pockets seen in enzyme active sites, thereby 
making the designing diffi cult [ 315 ]. In addition, the binding regions of STAT3 
protein–protein or DNA–protein interactions are often non-contiguous, making 
mimicry of these domains diffi cult to accomplish for simple peptides or peptidomi-
metics [ 314 ]. Yet, several small-molecule STAT3 inhibitors are under development, 
which have good binding affi nity for STAT3, potent STAT3 inhibitory activities, 
and a good safety profi le. If these compounds fail to progress into drugs, efforts 
need to continue in this area of drug development as the impact of having an effec-
tive STAT3 inhibitor available in the clinic to treat and/or prevent many cancers will 
be substantial. Future strategies directed toward the identifi cation of new small- 
molecule STAT3 probes should combine conventional screening-based strategies 
with FBDD and structural analytical tools, such as NMR analysis.     
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