Chapter 5 STAT3 Inhibitors in Cancer: A Comprehensive Update

Uddalak Bharadwaj, Moses M. Kasembeli, and David J. Tweardy

Abstract STAT3 is an important signaling molecule that modulates a wide range of genes by relaying extracellular signals from the plasma membrane to the nucleus in response to peptide hormone binding. It is known to play a prominent role in the initiation and progression of cancer, as it is constitutively activated in 25–100% of more than 25 different malignancies and has been implicated in nearly all the hallmarks of cancer. In addition, STAT3 contributes to development and maintenance of cancer stem cells, as well as to cancer immune evasion and resistance to chemotherapy and radiotherapy, making it an even more attractive target for cancer therapy. In this chapter, we give an overview of strategies involved in targeting STAT3 and discuss recent advances in the development of STAT3 modulating agents.

Keywords Cancer • Oncogene • Kinase • Inhibitor • Signaling • Phosphorylation • High throughput screen • Transcriptional activation • Therapeutic • Dysregulated • SH2 • Peptidomimetics • Aptamer • Decoy • Drug design • Nuclear • Allosteric • Interference • Rational • Clinic • Clinical trial • STAT3 • Resistance

5.1 Introduction

Signal transducer and activator of transcription 3 (STAT3) is a member of a family of seven proteins that are known to play important roles in growth factor and cytokine signaling [1]. Canonical signal transduction by STAT3 is initiated by the recruitment

D.J. Tweardy (🖂)

Department of Infectious Disease, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

U. Bharadwaj • M.M. Kasembeli

Department of Infectious Disease, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA e-mail: Ubharadwaj@mdanderson.org; MMKasembeli@mdanderson.org

Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA e-mail: DJTweardy@mdanderson.org

[©] Springer International Publishing Switzerland 2016 A.C. Ward (ed.), *STAT Inhibitors in Cancer*, Cancer Drug

Discovery and Development, DOI 10.1007/978-3-319-42949-6_5

of STAT3 to ligand activated membrane receptor complexes leading to a key phosphorylation event on Y705, which in turn induces a configuration change leading to tail-to-tail dimerization mediated by reciprocal SH2/pY705-peptide ligand interactions [2, 3]. The active dimer accumulates in the nucleus, where it binds to promoters and transcriptionally regulates a large number of target genes encoding proteins involved in cell survival, cell cycle progression, homeostasis, and inflammation.

Under normal physiological conditions the phosphorylation status of STAT3 in the cell is closely tied to receptor activation in response to extracellular stimuli, such that the intensity and duration of the intended signal is tightly regulated. Regulation of STAT3 is achieved by a number of elements that either act through negative feedback control on the phosphorylation of STAT3 or deactivation by dedicated nuclear phosphatases. Pathological conditions may arise in those instances where anomalies in the STAT3 signaling cascade lead to constitutive activation [1]. Hyperphosphorylation of STAT3 has been shown to occur through a variety of mechanisms, including, unregulated autocrine and paracrine secretion of cytokines and growth hormones [4], expression of intrinsically activated tyrosine kinases or receptors [5], or reduced levels of endogenous negative regulators of STAT3 signaling such as SOCS3, PIAS3, nuclear phosphatases [6, 7].

5.2 STAT3, The Oncogene

Dysregulated activation of STAT3 has been linked to the etiology and molecular pathogenesis of many diseases, most prominently cancer [4, 8], where the STAT3 signaling pathway has been implicated in nearly all features of cancer biology [7], including anti-apoptosis [9], cell transformation [8], growth and proliferation [2], angiogenesis [10], metastasis [11], and cancer stem cell maintenance [12]. Accordingly, over-expression or constitutive activation of STAT3 frequently occurs in a large number of both solid and hematological tumors (Table 5.1).

In addition to its established role in cell transformation and tumorigenesis, STAT3 oncogenic signaling has been implicated in immune regulatory mechanisms of multiple tumors [13]. For example, several studies showed that persistent activation of STAT3 leads to the suppression of anti-tumor immunity by promoting Treg recruitment within the tumor microenvironment, while negatively regulating antitumor Th1-mediated immune response [14, 15]. In addition, recent findings also revealed that STAT3 plays a crucial role in tumor immune resistance, as constitutive STAT3 activation has been shown to drive the expression of PD-L1, an immune checkpoint ligand that mediates immune inhibition within the tumor microenvironment [16]. Overall, it appears that STAT3 plays an important role in anti-tumor immune response by up regulating immune inhibitors while at the same time suppressing tumor immune activators.

From a therapeutic perspective, another significant aspect of STAT3 signaling that also merits attention is its role in chemotherapy resistance. Despite initial clinical responses to both targeted and cytotoxic cancer drugs, relapses are frequent and drug resistance remains a major obstacle in curing cancer [17, 18]. Because STAT3

•		
Tumor type	STAT3 activity in tumor tissue	STAT3 and clinicopathological features
Acute myelogenous leukemia (AML)	33 % pY-STAT3 + ve compared to bone marrow cells from normal donors [95]	NA
Chronic myelogenous leukemia (CML)	48.5% CML patients pY-STAT3 + ve compared to 36.8 controls (P=0.033) [316]	pY-STAT3 higher in advanced phase CML patients than in chronic phase patients $(22.77 \pm 4.41\% \text{ vs. } 11.47 \pm 3.14\%)$, P=0.003 [316]
T cell large granular lymphocytic	100% of T-LGL pY-STAT3 + ve [317]	NA
(1-LGL) leukemia	~40% of T-LGL patients harbor mutations in <i>STAT3</i> gene and/or STAT3 pathway related genes and harbor increased pY-STAT3 activity [318]	
Chronic lymphocytic leukemia (CLL)	100 % of CLL patients PBMC constitutive pS-STAT3 + ve in contrast to none among normal	NA
	PBMC or CD5+ B cells isolated from tonsil [319, 320]	
Lymphoma	87% of Hodgkins Lymphoma (HL), 46% of B-cell NHL, 73% of T-cell NHL stained pY-STAT3 + ve [321]	61 % ALCL tumors constitutive STAT3 activation (84 % of ALK ⁺ , 47 % of ALK ⁻). ALK correlates with STAT3 activation (P <0.0001). ALK ⁻ group: lack of STAT3 activation correlated
	100% lymphoma pY-STAT3 + ve, most intense staining in marginal sinus [210]	with a favorable 5-year overall survival ($P=0.0076$) [322]
Sézary syndrome (SS), type of cutaneous T-cell lymphoma (CTCL)	100 % of SS pY-STAT3 + ve compared to CD4+ T-cells from healthy controls [323]	NA
NPM-ALK + we anaplastic large cell lymphoma (ALCL)	95% NPM-ALK+ ALCL tumors nuclear STAT3+ve, vs. surrounding non-neoplastic lymphocytes. ALK-ve cases primarily cytoplasmic STAT3 [324]	Survivin associate to nuclear pY-STAT3 (P=0.007). ALK + ve group: 5-year failure-free survival (FFS): 34% in survivin + ve vs 100% in survivin-ve (p=0.009). ALK-ve group: 5-year FFS: 46% in survivin + ve vs. 89% in survivin-ve (p=0.03) [325]
Diffuse large B-cell lymphoma (DLBCL)	Strong pY-STAT3 (32.4%) and nuclear STAT3 (25.7%), more frequent in non-germinal center B cell-like (non-GCB) DLBCL than in GCB [326]	High nuclear STAT3 correlated with poor overall survival (OS, p=0.005), and is an independent prognostic factor for DLBCL [326]. Detectable pY-STAT3 associated with improved 5-year EFS (93% vs. 47%, p=0.006) [327]

 Table 5.1
 Constitutively activated STAT3 in various cancers

97

Table 5.1 (continued)		
Tumor type	STAT3 activity in tumor tissue	STAT3 and clinicopathological features
Non-germinal center B-cell–like (GCB-DLBCL) including activated B-cell–like (ABC-DLBCL)	61% non-GCB-DLBCL positive for pY-STAT3 [328]	PY-STAT3 associated with shorter survival in patients (n = 185) treated with RCHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone) [329] pY-STAT3 associated with worse event free survival [329]
Breast cancer	46% expressed high to moderate levels (3, 2+) of nuclear pY-STAT3, 23% low levels (+1), and 31% no detectable pY-STAT3 [330]	pY-STAT3 higher in invasive carcinoma (52%) than in non-neoplastic tissue (27.8%, p <0.001). pY-STAT3 lower in patients showing complete pathologic response, suggesting that higher levels of activated STAT3 made tumors less responsive to the treatment [331]
Lung cancer (non-small-cell)	(64.6%) pY-STAT3 + ve, in carcinoma tissue vs. 37.5% in normal tissue (p=0.001) [332]	78.8% lymph node metastasis + ve patients pY-STAT3 + ve (<i>p</i> =0.009) [332]. High STAT3/pY-STAT3 strong predictor of poor prognosis [333]
Endometrial cancer	64.9% pY-STAT3 + ve (Scores 2 and 3) compared to normal endometrial tissues [334]	High pY-STAT3 (Scores 2 and 3) detected in 11.8% of grade I, 25.8% of grade II, and 27.3% of grade III patients [334]
Cervical cancer	10.8% grade II and 10.5% grade III patients pY-STAT3+ve [334]	56.8 % patients + ve for pY-STAT3 which also correlated with lymph node metastasis, lymph vascular space invasion, and large tumor diameter (>4 cm). pY-STAT3 + ve indicative of a poor OS (p=0.006) and DFS (p=0.010) [335]
Clear cell renal cell carcinoma (ccRCC)	76.3% RCC tissues were nuclear pY-STAT3 + ve [336]	High CD44 correlates with high pY-STAT3 (r=0.4013, p=0.0004), high tumor grade (p <0.001), large tumor size (p=0.009) and advanced T stage (p=0.004). CD44-high/ pY-STAT3-high had poor survival vs. CD44-low/pY-STAT3- low (p=0.024) [336]
Hepatocellular carcinoma (HCC)	100 % HCC nuclear pY-STAT3 + ve, intense, moderate and weak staining in 28.5, 28.5 and 43 %, vs. weak nuclear pY-STAT3 in 40 % of normal liver. Intense/moderate STAT3 in 89 % of HCC vs. normal liver samples [337]	49.3 % HCC, vs. 5.8 % of adjacent non-tumor liver $(p < 0.001) + ve$ for pY-STAT3 which correlated with intratumour MVD $(p = 0.002)$ and was a predictor of OS $(p = 0.036)$ [338]

Cholangiocarcinoma (CCA)	44% of CCA tissues STAT3 positive [339]	STAT3 and STAT5b associated with non-papillary, poorly differentiated CCA (p =0.032 and p =0.001); STAT3 associated with shorter survival (p <0.001) [339]
Colorectal cancer	62 % pY-STAT3 + ve: 18 % high expression (pY-STAT3 high), 34 % low-level expression (pY-STAT3-low) [340]	pY-STAT3 associated to higher colorectal cancer-specific mortality [log-rank p=0.0020; univariate HR (pY-STAT3-high vs. pY-STAT3-ve): 1.85, 95 % confidence interval (CI) 1.30–2.63, ptrend=0.0005; multivariate HR: 1.61, 95 % CI (1.11–2.34), ptrend=0.015) [340]
Ovarian carcinoma (OC)	74% nuclear pY-STAT3 + ve [341]	pY-STAT3 increased in aggressive, high-grade vs. low-grade, indolent carcinomas (p<0.005) [342]
Pancreatic adenocarcinoma (PAC)	70.4% PAC pY-STAT3 + ve compared to none in normal pancreas [343]	pY-STAT3, a risk factor for prognosis, correlated to tumor size, TNM staging and lymphatic metastasis [343]
Head and neck squamous cell carcinoma (HNSCC)	75 % HNSCC tumors increased pY-STAT3+ vity vs. normal mucosa [344]	pY-STAT3 levels correlated to presence of lymph node metastasis (p<0.0001) [345] in HNSCC and decreased survival in oral and tongue tumors [346, 347]
Glioblastoma (GBM)	55.6% astrocytomas (AA) and 56.4%, GBMs were pY-STAT3 + ve [348] 50% of AA and 51% of GBM pY-STAT3 + ve [226, 346. 348–351]	40 % of Gliomas pY-STAT3 + ve with 27%, 29%, 57% and 66 % + vity in Grade I, II, III and IV gliomas, respectively [350]
Extramammary Paget disease (EMPD)	91.6% Paget cells pY-STAT3 + ve [351]	Strong nuclear pY-STAT3 staining in invasive EMPD [351]
Papillary thyroid cancer (PTC)	56.7% of PTC vs. 10.9% of adjacent normal thyroid tissues were pY-STAT3 + ve [352]	Nuclear pY-STAT3 positively correlated with presence of ETE and LNM, and higher TNM stage (p<0.05) [352]

signaling drives gene expression promoting cell growth and resistance to apoptosis, persistent activation of STAT3 is thought to confer resistance to drug mediated apoptosis [19]. Numerous studies show that hyper-activated STAT3 signaling plays a significant role in chemotherapy resistance. Accordingly, the inhibition of activated STAT3 signaling appeared to sensitize resistant tumor cells to the cytotoxic agents [20]. STAT3 is also emerging as a major contributor to adaptive resistance to targeted drug therapy. Notably, it has been demonstrated that STAT3 activation via a positive feedback mechanism underpins frequently observed drug resistance in many oncogene addicted tumor cells. Similarly, inhibition of STAT3 reversed drug resistance to RTK targeting. Taken together, these findings support targeting STAT3 to overcome resistance to cancer therapy [17, 21].

There is an overwhelming amount of clinical and preclinical data in solid and hematological cancers supporting STAT3 as a pharmacological target, which has prompted substantial efforts to develop STAT3 inhibitors. Currently, there are a number of STAT3 inhibitors in clinical trials and many more in active development, as will be discussed later in this chapter. Here we provide an update on efforts to develop inhibitors of STAT3 to treat various cancers and will discuss the strategies involved in targeting STAT3 and the advantages and pitfalls of each approach.

5.3 Strategies for STAT3 Inhibition

The STAT3 signaling cascade provides many opportunities to manipulate its activity, because each step in the activation process can serve as a potential target. In order to pharmacologically modulate STAT3 activity, it is important to understand how each step contributes to the transcriptional function of STAT3, as this information forms a basis for target identification and design of specific inhibitors (Fig. 5.1).

5.3.1 Structure and Biochemical Properties of STAT3

The initial steps in STAT3 activation are triggered by tyrosine phosphorylation events that drive key protein-protein interactions, which are necessary for signal transduction from the plasma membrane to the nucleus [22]. STAT signaling initiated by peptide hormones generally occurs through 3 types of receptors—receptor kinases, receptor-linked kinases, or G–coupled receptors [23, 24]. Peptide ligand binding stimulates cytoplasmic receptor-associated kinase activity leading to phosphorylation of receptors at key tyrosine residues. Phosphorylated tyrosine residues on the receptors act as anchors that recruit STAT3 proteins via their SH2 domains [25]. STAT3 is phosphorylated at Y705 and subsequently dimerizes in a tail-tail conformation.

Migration from the cytoplasm into the nucleus is required for STATs to transduce signals and regulate gene expression in response to extracellular stimuli. It has been noted that once dimerized in a tail-to-tail configuration, STATs rapidly accumulate

Fig. 5.1 Strategies for targeting STAT3 signaling. STAT3 signaling cascade is triggered by phosphorylation. (**a**) Upstream events including ligand binding, receptor activation or kinase activity can be blocked to prevent STAT3 phosphorylation. (**b**) Blocking STAT3 recruitment onto receptors inhibits phosphorylation of STAT3 at Y705 and consequently SH2-SH2 dimerization. (**c**) Inhibitors that disrupt the SH2-SH2 dimer block the transcriptional activity of STAT3. (**d**) Nuclear localization can be blocked by targeting importins or importin binding sites on STAT3. (**e**) The DNA binding domain can be targeted to inhibit STAT3 DNA binding, consequently transcriptional activity

in the nucleus. Though initially thought to be dependent on tail-to-tail dimerization of STAT3, subsequent studies now suggest that STAT3 is constitutively shuttled between the cytoplasm and nucleus independent of phosphorylation [26]. Studies show that rather than a passive process dependent on diffusion, nuclear translocation of STAT3 is an active process. Indeed, the nuclear import and export of STAT3 as well as other STATs is facilitated by a group of proteins belonging to the karyopherin-B family called importins [27]. Available data shows that importin $\alpha 3$, $\alpha 5$, α 6, and α 7 are involved in the nuclear translocation of STAT3. Importin α 3 and α 6 are linked to translocation of unphosphorylated STAT3 while α 5 and α 7 are required for pY-STAT3 nuclear import [28]. All importins involved in STAT3 trafficking appear to utilize a NLS located within the coiled-coiled domain of STAT3 [29, 30]. Once localized in the nucleus, STAT3 binds to specific DNA elements via its DNA binding domain (DBD), whereby it engages the transcriptional machinery by recruiting a number of coactivators and chromatin remodelers, such as cAMP response element binding protein/p300 (CBP/p300) complex and steroid receptor coactivator 1 [31, 32].

Fig. 5.2 Domains structure of STAT3. STAT3 has 6 domains with specific biochemical functions. NH2-terminal domain (NTD), coil coiled domain (CCD), DNA binding domain (DBD), linker domain (LD), SRC homology domain (SH2), and transactivation domain (TAD)

5.3.2 Functional Domains of STAT3

STAT3 is composed of an N-terminal domain (NTD), a coiled-coil domain (CCD), a DNA-binding domain (DBD), a linker domain (LD), an SH2 domain, and a C-terminal domain. The structure of the core fragment of STAT3, which includes the CCD, DBD, LD and SH2 showed that each domain of STAT3 has a distinct function and is essential for the signal transduction and transcriptional activity of STAT3 (Fig. 5.2).

STAT3 has no enzymatic activity that would make it amenable to small-molecule intervention; rather, its mode of action depends on protein-protein interactions (PPI) and protein-DNA interactions. Thus, strategies for targeting STAT3 mainly rely on the ability to disrupt these interactions. Although the prevailing dogma is that PPI interfaces generally lack special topological features amenable to small molecule inhibition, STAT3, nonetheless, has proven to be a compelling protein to target using small molecules. The available X-ray crystallographic data of both the monomer and dimerized STAT3 bound to DNA have been instrumental in revealing physical chemical properties of phosphotyrosyl (pY) peptide binding, as well as DNA recognition that have laid the foundation for the development of many STAT3 inhibitors by rational design.

5.3.3 Inhibitors Acting Upstream of STAT3 Activation

There is a strong correlation between the phosphorylation status of STAT3 at Y705 with tumor initiation and progression (Table 5.1), yet the reason for dysregulated STAT3 signaling is only rarely due to mutations in the signaling molecule itself. Although the reason for abnormal STAT3 signaling in cancer is not fully understood, most instances of hyper-phosphorylated STAT3 observed in cancer are mediated by receptor tyrosine kinases (RTK), for example EGFR, or non-receptor tyrosine kinase activity of RTK, over expression of RTK, or persistent stimulation of RTK or tyrosine kinase-associated receptors by cytokines and growth factors [33–35]. As such, intense efforts have focused on inhibiting events upstream of STAT3 that drive STAT3 phosphorylation [36, 37].

There are several therapeutic strategies used to block upstream activation of STAT3, One involves targeting the tyrosine kinase enzymatic activity of specific receptors or associated kinases using small molecule inhibitors of RTKs, JAK2 and SRC kinases. Another strategy involves disruption of protein-protein interactions necessary for receptor mediated signal transmission across the plasma membrane. The later strategy has been achieved in several ways including blocking cytokine binding to the extracellular portions of the receptors, and disruption of receptor oligomerization. These strategies primarily involve blocking cytokine or growth factor activation of cognate receptors with the use of monoclonal antibody-based inhibitors that target either the ligand or critical sites on extracellular portion of receptors. Another strategy in this category involves the use of an aptamer, a short peptide portion derived from a random peptide library integrated into the thioredoxin scaffold protein, which specifically binds to the intracellular domain of the EGF receptor blocking the recruitment of substrate to the receptor [38].

All the above approaches have shown success in targeting STAT3 activation leading to induction of cancer cell death (Table 5.2) and have demonstrated significant clinical efficacy. However, acquired resistance against tyrosine kinase inhibitors remains a significant challenge [21, 39]. Besides, there have been inhibitors (e.g. OPB-31121) that showed very low nanomolar level IC₅₀s in pre-clinical settings, but eventually failed to show efficacy in clinical trials. Moreover, due to the pleiotropic nature of cytokines such as IL-6 there are always concerns of potential toxicity due to off-target effects [40, 41]. Recent studies now provide a rationale for direct targeting of STAT3 by itself or in combination with other therapeutic approaches for combating drug resistance in cancer treatment [21, 42].

5.3.4 Inhibitors Targeting the STAT3 SH2 Domain

The SH2 domain presents a defined and well-characterized targeting site with suitable topological features amenable to small molecule intervention and has proven to be tractable for small molecule inhibition of STAT3. Additionally, the SH2 domain of STATs have a dual function where they act as receptor recruitment modules as well as dimerization domains necessary for high-affinity STAT DNA-binding. The SH2 domain has become the favored target for platforms geared towards rational design, as well as *in vitro* and cell based screens for several reasons, including: (i) the pY-peptide binding site provides a suitable druggable site for *in silico* docking screens, (ii) pY705 phosphorylation is a convenient surrogate for STAT3 activation making it amenable to very robust cell based high-throughput screening (HTS) assays, and (iii) the SH2 domain binds short cognate pY-peptide ligands and, thus, provides a platform for competitive inhibition bind assays such as SPR and fluorescence polarization that have routinely been used to directly screen for competitive inhibitors of pY-peptide binding. The greatest effort at designing STAT3 inhibitors has been directed at the SH2 domain, as summarized below (Table 5.3).

				ICOU STALS INNIDITION	ICDU cell growth		
Inhibitors	Type	Description	Blocks	(assay)	inhibition, cells	Pre-clinical animal models	Ref
PD153035	SM	EGFR TK inhibitor	pY, DM,	~100 nM, EGF-	0.2-2.5 μM, HER2/	80 mg/kg, IP, A431	[353-355]
			NT, DB, GT	stimulated pSTAT3 MDA-MB-468	Neu + ve cancer cells	xenografts	
Oleanolic Acid	SM	JAK2, SRC, EGFR, STAT3 inhibitor	pY, DM, NT, DB, GT	~20 ^E µM, constitutive pSTAT3, U373	~20 ^E µM, U373	NA	[356, 357]
Brevilin A	SM	JAK inhibitor	pY, DM, NT, DB, GT	10.6 μM, constitutive pSTAT3 A549R	>20 µМ, А549R	NA	[358]
Tofacitinib	SM	JAK3 inhibitor,	pY, DM,	0.07 μM, constitutive	0.07 μM, JAK2V617F-	NA	[359–363]
(CP-690,550)		inhibits pSTAT1/3/4/5/6	NT, DB, GT	pSTAT3, JAK2V617F/ FDCP-EpoR	transduced FDCP-EpoR		
Sorafenib	SM	JAK2/STAT3 inhibitor	pY, DM, NT, DB, GT	<3 μM, constitutive pSTAT3, U87	1-2 μM glioblastoma cells	100 mg/kg, IP, U87-Luc xenografts	[364]
AZD1480	SM	JAK1/2 inhibitor,	pY, DM,	0.35 µM, nuclear	0.36-5.37 µM, Ewing	30-50 mg/kg, OG,	[41, 269,
		inhibits	NT, DB, GT	translocation	sarcoma cells	DU145, MDA-MB-468,	272,
		pSTAT1/3/5/6				MDAH2774 xenografts	365-370]
Atiprimod	SM	JAK2/3 inhibitor,	pY, DM,	~4– $8^{\rm E}$ µM, constitutive	0.5-1.5 μM, HEPG2	50 mg/kg/2d, IV, OPMI	[371–375]
		inhibits pSTAT3/5	NT, DB, GT	pSTAL3, U266-B1		xenografts	
Auranofin	SM	JAK1/STAT3 inhibitor	pY, DM, NT, DB, GT	μM, IL6-stimulated pSTAT3, HepG2	0.05 μM, U266	7 mg/kg/d, IP, IM-resistant Bcr-Abl-T3151 xenografts	[376–379]
Sanguinarine	SM	JAK2, Src, STAT3	pY, DM,	$\sim 1-2^E \mu M$, IL6-	1.3/1.6 μM, A17,	2.5/5 mg/kg/2d, 7d, IG,	[380-382]
		inhibitor	NT, DB, GT	stimulated pSTAT3, DU145	MDA-MB-231	GTL-16 xenografts	
Cucurbitacin I	SM	JAK2/STAT3	pY, DM,	7.5/0.5 µM, constitutive	2.9–10.5 μM, cells from	1 mg/kg/d, 15d, IP,	[383, 384]
(JSI-124)		inhibitor	NT, DB, GT	pSTAT3 MD-MB-468, A549	CLL patients	HRas/3 T3/A549/ MDA-MB-468/Calu-1	
						xenografts	

104

Table 5.2 STAT3 upstream inhibitors in development

[385–392]	[393–395]	[396–398]	[399]	[400, 401]		[402-404]		[405, 406]		[151, 288, 407]	[408, 409]	[410, 411]	
1 mg/kg, IP, Panc-1 xenografts	3 mg/kg, IL, PC3 xenografts	1–2 mg/kg, IP, PLC/PRF5 cells	20–50 mg/kg, IP, HCCLM3_Luc2	10 mg/kg, IP, SYO-1 xenografts		5 mg/kg, IP, Caki-I xenografts		5 mg/kg, IC, EGFRvIII	cell intracranial xenografts	40 mg/kg, OG, Caki-1, GL26 xenografts	100 mg/kg, PO, Ba/F3 V617F-GFP xenografts	50 mg/kg, IP MDA-MB-231 xenografts	
~0.5 nM, leukemia, HCC, breast cancer cells	~10 nM, HUVEC, PC3)	1.1–3 μM, H1650/ H1975/H2228	35.8–46 μM, FaDu/ HSC-3	8 nM, MTT CME -1, cells	13 nM, MTT SYO-1 cells	$\sim 50^{\rm E} \mu M$, Huh-7		40 μM HT29, cells	50 μM Caki-1 cells	2.5 μM Caki-1 cells 2.3 μM, HEL cells	2-5 μM myeloma cells	0.11-0.64 μM Pancreatic 0.14-0.60 μM Breast cancer cells	-
Low nM-high µM, constitutive pSTAT3, PANC-1, K-562	1.4 µM, constitutive pSTAT3, MD-MB-468	~2.5 ^E µM, constitutive pSTAT3, C3A	25-50 ^E μM, constitutive pSTAT3, HepG2	Does not block pSTAT3		СА: 70–100 µМ	CADPE 15–30 μM, hypoxia-induced pSTAT3, Caki-1	50-100 μM,	constitutive pSTAT3, renal/colon cancer cells	1–2 ^E μM, constitutive pSTAT3, HEL	~2–5 ^E µM, constitutive pSTAT3, HEL	2.5-5 μM, constitutive pSTAT3, MDA-MB-231,	PANC-1
pY, DM, NT, DB, GT	pY, DM, NT, DB, GT	pY, DM, NT, DB, GT	pY, DM, NT, DB, GT	DM, NT, DB, GT		pY, DM, NT, DB, GT		pY, DM,	NT, DB, GT	pY, DM, NT, DB, GT	pY, DM, NT, DB, GT	pY, DM, NT, DB, GT	-
JAK2/STAT3 inhibitor	JAK2/STAT3 inhibitor	JAK2, SRC, STAT3 inhibitor	JAK2/STAT3 inhibitor	SRC/ABL / KITSTAT3 inhibitor		JAK2, SRC, STAT3 inhibitor		JAK3		JAK2/STAT3 inhibitor	JAK2/STAT3 inhibitor	JAK2, STAT3 inhibitor, binds to STAT3 SH2 domain	_
SM	SM	SM	SM	SM		SM		SM		SM	SM	SM	
Cucurbitacins B	Cucurbitacin E	Celastrol	Emodin	Dasatinib		Caffeic Acid (CA)	CADPE	AG490		WP1066	TG101209	FLL32	

(continued)

Table 5.2 (contin	(pən						
Inhibitors	Type	Description	Blocks	IC50 STAT3 inhibition (assay)	IC50 cell growth inhibition, cells	Pre-clinical animal models	Ref
Avicin D	SM	JAK1/2/3 and STAT3 inhibitor, acts through SHP1 upregulation too	pY, DM, NT, DB, GT	~1 ^E μM, pSTAT3, U266 cells	5 ^E μM, U266 cells, 0.32 μM, Jurkut cells	NA	[412, 413]
E738	SM	SRC and JAK inhibitor	pY, DM, NT, DB, GT	1–5 μM, constitutive pSTAT3, PaCa cells	0.68–2.2 μM, pancreatic cancer cell	NA	[414]
MLS-2384	SM	SRC and JAK inhibitor	pY, DM, NT, DB, GT	1–2.5 µМ, constitutive pSTAT3, DU145, MDA-MB-468, A2058, A549	2 μM, DU145, MDA-MB-468, A2058, A549	25 mg/kg, PO, melanoma	[415]
CYT387 (Momelotinib)	SM	JAK2 Inhibitor	pY, DM, NT, DB, GT	NA	1.5 μM, Ba/ F3-JAK2V617F, HEL cells	15 mg/kg, PO, HEY cell xenografts	[416, 417]
Ergosterol peroxide (EP)	SM	JAK, SRC, STAT3 inhibitor	pY, DM, NT, DB, GT	8–12.5 μM, constitutive pSTAT3, U266, SCC4, DU145. MDA-MB-231	NA	100 mg/kg, IP, U266 cells xenografts	[418]
PP2	SM	SRC inhibitor/ STAT3		μM, LIF-activated pSTAT3	0.2–3 μM, melanoma cell		[419, 420]
Ponatinib	SM	FGFR4 inhibitor	pY, DM, NT, DB, GT	0.2–0.8 μM, constitutive pSTAT3, RH4/RH5/RH41	0.2–0.9 μM, rhabdomyosarcoma	30 mg/kg, PO, RMS722 xenograft	[421]
Benzyl isothiocyanate	SM	Inhibits SRC recruitment and hence STAT3	pY, DM, NT, DB, GT	5-10 μM, constitutive pSTAT3, PaCa cells	8-10 μM, PANC-1, BxPC3	12 μM, PO, BxPC3 xenografts	[308, 422]
CNTO-328 (Siltuximab)	Ab	MAb to IL6 JAK/STAT inhibitor	pY, DM, NT, DB, GT	0.06–0.6 µM, IL6- activated pSTAT3 HKOV3	No effect on viability, H1650 cells	10 mg/kg, 36d, IP, H1650 xenografts, NSCLC PDX	[423, 424]

106

[425, 426]	[427]	[38]	[428, 429]
20 mg/kg, IP, HepG2 xenografts	0.2–0.5 mg/mice, IP, A431 xenografts	NA	25 mg/kg, IP, 27d, PANC-1 xenografts
0.09–0.27 nM Ba/F3 cells	NA	NA	$\sim 10^{\rm E} \mu M$, pancreatic cancer cells
NA	NA	NA	~5−10 ^E μM, pSTAT3, PANC-1
pY, DM, NT, DB, GT	pY, DM, NT, DB, GT	pY, DM, DB, NT, GT	Py, DM, NT, DB, GT
MAb to IL-6R JAK/STAT inhibitor	MAb to EGFR	EGFR intracellular domain amino acids 688–821, interacting aptamers	EGFR inhibitor
Ab	Ab	AP	SM
Toclizimab	Cetuximab	KDI1/KDI3/ KDI4	Xanthohumol

Note: Information for Pre-clinical animal models consist of Dose, route of administration, duration (if available) and animal model used. Abbreviations: E estimated from descriptive data on inhibition, from corresponding reference, NA not available, Ab antibody, SM small molecule, pY STAT3 phosphorylation at Tyr-705, DM dimerization, NT nuclear translocation, DB DNA-binding, GT gene transcription, IG intra-gastrical, TK tyrosine kinase, IC intra-cranial, PO per Os (by mouth), IP intra-Peritoneal, MAb monoclonal Ab, AP aptamer

				IC50 STAT3	Kd (STAT3	IC50 Cell growth	Pre-clinical	
Inhibitors	Type	Description	Blocks	inhibition (assay)	binding)	inhibition, cells	animal models	Ref
Inhibitors targeting S	TAT3 S	H2 domain						
PY*LKTK(-mts)	Ч	Phosphopeptide derived from STAT3 (vicinity of <i>Y</i> -705)	DM, DB, GT	235 μM, STAT3-hSIE binding EMSA	NA	>500 µM, NIH 3T3/vSrc colony	NA	[45]
PY*L	Ч	Minimal STAT3 p-peptide required for STAT3 inhibition	DM, DB, GT	182 μM, STAT3-hSIE binding EMSA	NA	NA	NA	[45]
ISS 610	Μd	Peptidomimetics developed replacing P by 4-cyanobenzoate	DM, DB, GT	42 μM, STAT3- hSIE binding EMSA	NA	>1000 μM, NIH 3T3/vSrc colony	NA	[45, 49, 430, 431]
PDP/ Phosphododeca peptide(-mts)	പ	P-peptides Y 1068 + p/LPVPE(pY) INQSVP & Y 992 + p/TDSNF(pY) RALMDE from STAT3 binding sequence of EGFR	pY, DM, DB, GT	350–750 µM, IL6/ EGFR stimulated STAT3 binding EMSA, HepG2/ UM-SCC-23	NA	~750 µМ, А431	NA	[25
Ac-Y*LPQTV	Ч	p-peptide from STAT3 binding sequence of gp130	DM, DB, GT	0.15 µM, STAT3-hSIE binding EMSA	NA	NA	NA	[44, 52]
Hydrocimamoyl- Tyr(PO3H2)-L-cis- 3,4-methanoPQ- NHBn	Ч	P-peptide from STAT binding sequence of gp130	DM, DB, GT	0.125 µM, STAT3-hSIE binding EMSA	NA	NA	NA	[44, 52]
CJ-1383	Μd	PM developed from Ac-Y*LPQTV	pY, DM, DB, GT	~10 μM ^E , pSTAT3, MDA-MB-468	0.95 μM, STAT3 binding, FP	3.6–11.2 μM, MDA-MB-468, MDA-MB-231	NA	[433]
PM-73G	Md	Mimetic developed from Ac-Y*LPQTV	pY, DM, DB, GT	0.1–0.5 μM, pSTAT3-inhibition, cancer cells	ΝA	≥30 μM, MDA-MB-468, A549	5 mM, IT, MDA-MB-468 xenografis	[53, 54]

 Table 5.3 Direct STAT3 inhibitors in development

ST/ ST/ ell-p	ophan zipper sci AT3-binding pep enetrating motif	uffold attached to tide and	pY, DM, DB, GT	NA	231 nM STAT3 binding, SPR	10-20 μM, A549	8 mg/kg, IT, A549 xenografts	[55]
tecognizes dime hibits STAT3 f	uncti	ion domain and on	Py, DM, NT, DB, GT	ΑN	1–4 ^E μM, ligand- stimulated pSTAT3, HepG2	1-4 ^E μM, various cancer cell lines	7.5 mg/kg, IV 15d, Tu9648 xenografts	[56-59]
TAT3-DD (ami 55–755) bindin	no ac g apt	id positions amers	Py, DM, NT, DB,	NA	NA	NA	NA	[163]
DD-1: PPLVCIR: DLGPASQWLCI	SWC	CPLMVPHSA ASIALLPRYSS	GT					
DD-2: VGWTWN EGPVVVQAGG	1SV AV	TLVCCDGSGLV PISGSVALMTD						
DD-3: SPISIPIGFV PLSWPARVSGY	$S \leq S$	RHCALHMAV FALEVLTNF						
hosphate binders e retal-picolylamine	ျပ်ပ	. Lewis acidic omplexes acting	DM, DB, GT	15–128 μM, F*pYLPQTV	8-100 μM, pY-LKTK	77/11/100 μM, DU145	NA	[09]
s SH2-proteomim hosphopeptide-S'	ΪŇ	etics, disrupt F3 complexes		gp130p-STAT3 binding, FP	STAT3p binding,	73/11/100 μM, OCI-AML2		
					IGT	115/5/56 μM, MDA-MB-468		
Developed from I: eptidomimetic	SS	510	pY, DM, DB, GT	79 μM, STAT3- hSIE binding EMSA	NA	~100 µM	5–20 mg/kg, IV, MDA-MB-231 xenografts	[50]
tructure-based vi creening for STA ielded STA-21	rtuć T3-	ul screening and luciferase	DM, NT, DB, GT	20-30 ^E μM, STAT3-hSIE binding EMSA	NA	12.2/18.7 μM, DU145, PC3,	NA	[61–63]

				IC50 STAT3	Kd (STAT3	IC50 Cell growth	Pre-clinical	
Inhibitors	Type	Description	Blocks	inhibition (assay)	binding)	inhibition, cells	animal models	Ref
LLL-3	SM	Structural analogue of STA-21	DM, NT,	$\sim 40^{\rm E} \mu M$,	NA	6.3 μM/K562,	50 mg/kg, IT,	[64, 434,
			DB, GT	STAT3-hSIE		10–20 µM, U87,	intra-cranial	435]
				binding EMSA,		U251, U373;	U87 xenografts	
				SJSA cell		11.3 μM, DU145		
LLL-12	SM	Derived by replacing acetyl group of	pY, DM,	0.16-3.09 µM,	NA	0.3-0.8 μM, U2Os,		[65-73]
		LLL-3 with sulfonamide to	NT, DB,	pSTAT3, various		SAOS2, SJSA		
			GT	cancer cells		0.97–3.1 μM,		
						MDA-M231,		
						SKBR3,		
Stattic	SM	Hit from HT fluorescence polarization	pY, DM,	$5.1 \pm 0.8 \mu M$,	NA	0.43–2.6 µM, C,	50 mg/kg, PO	[74–76]
		screen for binding to STAT3 SH2	DB, GT	gp130-derived		MM, G cells	(UM-SCC-17B	
		domain		p-peptide binding		4.3-5.6 μM,	orthotopic	
				to Stat3 SH2		Nasopharyngeal	xenografts	
				domain		cancer cells		
S31-201/NSC	SM	Structure based virtual screening of	pY, DM,	86 μM, STAT3-	NA	300 μM, LNCaP	5 mg/kg,	[81, 82]
74859		NCI chemical libraries with computer	NT, DB,	hSIE binding			once/2day, 16d,	
		model of SH2-p Ypeptide interaction	GT	EMSA			IV,	
							MDA-MB-231	
							xenografts	
S31-201.1066/	SM	Resulted from molecular modeling of	pY, DM,	35 μM, STAT3-	2.7 μM,	35/48/37 μM,	5 mg/kg,	[83, 84]
SF-1066		the pTyr-SH2 interaction combined	NT, DB,	hSIE binding	pY-peptide	NIH3T3/v-Src,	once/2day, 17d,	
		with in silico structural analysis of	GT	EMSA	STAT3	Panc-1,	IV,	
		S3I-201		23μ M, pY-peptide	binding,	MDA-MB-231	MDA-MB-231	
				STAT3 binding,	SPR		xenografts	
				SPR				

Table 5.3 (continued)

[87, 88]	[91, 92]	[92]	[89]	[93, 94, 96]
1/3 mg/kg, once/2day, 15d, IV or PO, MDA-MB- 231,A549 xenografis	10 mg/kg, 15d, IP/PO, BT73 xenografts	5 mg/kg, 15d, IP or 3 mg/kg, OD, PO, U251/ MDA-MB-231 xenografis	NA	12.5 mg/kg, 14d, IP, chemoresistant PDX models 50 mg/kg, 14d, IP, UM-SCC- 17B xenografts
10.9–22.7 µМ, МDА-МВ-468, DU145, JJN3	0.07–0.2 µM, 25EF, 67EF, 73E, 84EF, and 127EF 1.9–9.6 µM, vSrc, 231, DU145, Panc-1, U251MG, U87MG, U373MG, SF295	1.1–10.3 μM, growth, vSrc, 231, DU145, Panc-1, U251MG, U87MG, U373MG, SF295	41-80 μM, various cancers	0.7–3.9 μM, ED50, apoptosis MDA-MB-468/ MDA-MB-231,
Ki 13 µM, pY-peptide STAT3 binding, SPR	Kd 0.3–2.4 μM, direct binding to STAT3, SPR	Kd 2.4 µM, direct binding to STAT3, SPR	0.8–12 μM pY-peptide STAT3 binding, SPR	Ki 37.3 nM, pY-peptide STAT3 binding, SPR
6.8 µM, STAT3- hSIE binding EMSA	4.7 μM, STAT3- hSIE binding EMSA	3.9 μM, STAT3- hSIE binding EMSA	27–84 µM STAT3-hSIE binding EMSA	7.5–20 µM, pY-peptide STAT3 binding, SPR 16.2 µM, G-CSF-stimulated pSTAT3, Kasumi-1, Luminex
pY, DM, NT, DB, GT	pY, DM, NT, DB, GT	pY, DM, NT, DB, GT	pY, DM, NT, DB, GT	pY, DM, NT, DB, GT
STAT3 SH2-inhibitors	Screening BP-1-102 analogues for anti-STAT3 and anti-tumor functions	Screening BP-1-102 analogues for anti-STAT3 and anti-tumor functions	GOLD and 3D-pharmacophore analysis with known STAT3 inhibitors and subsequent wet lab screening	Virtual ligand screening, by docking 920,000 small molecules into the pY-binding pocket of the STAT3 SH2 domain and further high-throughput screens
SM	SM	SM	SM	SM
BP-1-102/17o	SH4-54	SH5-07	S3I- V3-31/32/33/34	C188

(continued)
le 5.3

				IC50 STAT3	Kd (STAT3	IC50 Cell growth	Pre-clinical	
Inhibitors	Type	Description	Blocks	inhibition (assay)	binding)	inhibition, cells	animal models	Ref
C188-9	SM	2D similarity screening using scaffold of C188, and 3D pharmacophore analysis in a hit-to-lead program identified C188-9	pY, DM, NT, DB, GT	2.5 µM, pY-peptide STAT3 binding, SPR	Ki 12.4 nM, pY-peptide STAT3 binding, SPR:	0.7–14.8 µM, growth, HNSCC cells, MTT	100 mg/kg, 14d, IP, UM-SCC- 17B xenografts	[95–98 231]
				3.7 μM, G-CSF- stimulated pSTAT3, Kasumi-1, Luminex	Kd 4.7 nM, STAT3- binding, MST	0.8-25 μM, ED50, apoptosis in primary AML		
Cryptotanshinone	SM	Screen of natural compound library with HT STAT-luciferase screen	pY, DM, NT, DB, GT	4.6 µM, STAT3-luciferase	NA	7 µM, DU145; 5.8–15.1 µM, growth AML, colon cancer, breast cancer cells	NA	[100-105]
STX-0119	SM	In-silico docking and screening through biochemical methods	DM, NT, DB, GT	4.6 μM, STAT3-luciferase	NA	1.4–18.3 μM, growth, hematological cancer cells,	40 mg/kg, 5d, IP, SCC-3, GBM-SC xenografts	[110-113]
C48	SM	Hit from VLS screen using entire STAT3 SH2 domain	pY, DM, DB, GT	3–10 μM, OSM-induced STAT3-dependent luciferase activity	NA	10-20 µM, apoptosis induction MDA-MB-468	200 mg/kg, IP, MDA-MB-468 xenografts in nude mice 100-200 mg/kg, syngeneic C3L5 mouse model	[62]

[115]	[273– 278]	[395, 436]	[119-	[123]
15 mg/kg, 21d, MDA-MB-468 xenografts	100–300 mg/kg, IP, xenografts in nude mice. Reduction of tumor by 79–95%	20 mg/Kg, IP, FVB/N Tg(MMTV neu)202Mul/J) mice; 0.5 mg/kg A549.v -Src/3 T3 xenografts	NA	NA
0.2–4.6 µM, growth, breast cancer cell, MTT	Low nM range IC50, STAT- addictive oncokinases (SAO) + ve cells from various cancers	1–3 ^E μM, colony MD-MB-468	15–50 µM, growth, breast, pancreatic, HCC, rhabdom yosarcoma, MTT	9.7/10.1/43.3 μM, HCT-116, growth, MTT
Ki 68 nM, STAT3-pY- peptide binding, SPR	Kd 10 nM STAT3 binding	NA	NA	NA
0.9–2.7 µM, IL6/ sIL6R-induced pSTAT3, luminex	3-10 μM, OSM-induced STAT3-dependent luciferase activity	1.4 μM, constitutive pSTAT3 MD-MB-468	~20 ^E μM, constitutive pSTAT3, HCC cells	~20-50 ^E µM, constitutive pSTAT3, HCT-116 cells
pY, DM, NT, DB, GT	pY, DM, NT, DB, GT	pY, DM, NT, DB, GT	pY, DM, NT, DB, GT	pY, DM, NT, DB, GT
High throughput screen of a repositioning library for inhibitor of STAT3 nuclear translocation	Very potent SH2 domain inhibitor with activity in low nM range	Stops STAT3/5 recruitment to EGFR and gp130. Doesn't affect upstream kinases, most probably targeting SH2	Peptide mimicking small molecule design from known STAT3 inhibitor knowledge	FBDD using MLSD and drug repositioning screen
SM	SM	SM	SM	SM
Piperlongumine	OPB-31121	Withacnistin	S-HZX	T2, T3, Celecoxib

Inhibitors	Tvpe	Description	Blocks	IC50 STAT3 inhibition (assav)	Kd (STAT3 binding)	IC50 Cell growth inhibition, cells	Pre-clinical animal models	Ref
HJC0123	SM	FBDD based on structure of	pY, DM,	$\sim 1^{\rm E} \mu M$,	NA	$0.1-1.2 \mu M$, breast	50 mg/kg, PO,	[119,
		niclosamide and other STAT3	NT, DB,	constitutive		and pancreatic	MDA-MB-231	125,
			5	MDA MB 721		calleel cells,	venugratus	170]
				cells		growur, ivi i i		
Ly5	SM	FBDD. By inking naphthalene-5,8-	pY, DM,	$\sim 0.5 - 1.4 \ \mu M$,	NA	0.5–1.39 µM	NA	[127,
		dione-1-sulphoneamide fragment of	NT, DB,	stimulated STAT3,		U2OS/RD2,		437-
		LLL12 as binding moiety to pTyr705	GT	MDA-MB-231		growth, MTT		439]
		of STAT3-SH2 domain		cells		0.32–0.48 μM, UW288-1, UW426, and DAOY		
T40214/T40231	GQ-	G-quartet oligonucleotide binds to	pY, DB,	5 μM [·] STAT3	NA	NA	10 mg/kg, IP,	[144,
	ODN	STAT3 SH2 domain	GT	DNA-binding,			NSCLC,	145,
				prostate, breast,			HNSCC,	147,
				HNSCC cells			prostate, breast	440– 1131
Inhihitors targeting S	TAT3 DI	RD					vehogratus	2
Decov ODN	ODN	Sense: 5'	NT. DB.	NA	A N	~12.5 ^E uM. 1483	25 IIP. IT. 1483	[133.
		C*A*T*TTCCCGTTA*A*T*C 3' AS:	GT			cell growth MTT	xenografts	140,
		5' G*A*T*TTACGGGGAA*A*T*G 3',				8 nM, HUVEC and	1	292,
		"*" denotes phosphorothioated sites)				137 nM, HDMEC		444, 445]
13410/13410A/	ODN	Oligonucleotide decoy, modification of	NT, DB,	NA	NA	40–200 nM,	NA	[137,
SeqD		consensus STAT3-binding sequence	GT			apoptosis DU-145		446]
CPA-7	SM	Platinum (IV) complexes	DB, DM,	1.5 μM, DNA	NA	2.9–23.7 μM,	5.5 mg/kg,	[149,
			DB, GT	binding EMSA		GL26, SMA560,	tail-vein, GL26	[ICI
						CNS1, IN859, U251, HF2303	xenografts	

 Table 5.3 (continued)

IS3 295	SM	Platinum (IV) compound screened from NCI 2000 diversity set, non-competitive	DB, DM, DB, GT	1.4 µM, DNA binding EMSA	NA	<10 μM ^E (colony formation Src/ NIH3T3	NA	[149]
inS3-54	SM	Virtual screening for binding to DBD of STAT3	DB, DM, DB, GT	20 μM, DNA binding EMSA	NA	3.2–5.4 μM (MDA-MB-468, MDA-MB-231, A549, H1299	NA	[154]
inS3-54A18	SM	Activity-guided hit optimization and mechanistic characterization from inS3-54	DB, DM, DB, GT	11 μM, STAT3 dependent luciferase	NA	3.2–4.7 µM, MDA-MB-468, MDA-MB-231, A549, H1299	8 mg/kg, OG, A549 xenografts in nude mice	[150]
НО-3867	SM	Conjugation of a diarylidenyl- piperidone, DAP) backbone to N-hydroxypyrroline (-NOH) group	pY, DM, NT, DB, GT	µM,constitutivepSTAT3,HO-3867	NA	3–5 μM, BRCA-1 mutated ovarian cancer cells	50/100 ppm, in feed, A2780 xenografts	[156– 158, 447, 448]
Galiellalactone	SM	Fungal metabolite, co-valent modifier	DM, DB, GT	~4 µM ^E , DNA binding DU145, EMSA	NA	3.4 μM, DU-145 cell growth, MTT	5 mg/kg, IP DU-145-Luc xenografts	[160– 162]
DBD-1/DBD-1-9R	AP	STAT3-DBD (aa 322-483) binding aptamer, p-seq: PLTAVFWLIYVLAKALVTVC	DM, DB, GT	NA	NA	180–369 nM ^E , U266	NA	[38, 163]
Inhibitors targeting S	TAT3 N	D						
Hel2K-Pen/ ST3-HA2A	SM	Cell permeable analogs of the STAT3 second helix	DM, NT, DB, GT	NA	NA	0.7–3.5 ^E , Du145, LNCap, PC3	NA	[151, 288, 407]

Note: Information for Pre-clinical animal models consist of Dose, route of administration, duration (if available) and animal model used

Abbreviations: E estimated from descriptive data on inhibition, from corresponding reference, NA not available, Ab antibody, SM small molecule, pY STAT3 phosphorylation at Tyr-705, DM dimerization, NT nuclear translocation, DB DNA-binding, GT gene transcription, IG intra-gastrical, TK tyrosine kinase, IC intra-cranial, PO per Os (by mouth), OG oral gavage, FP fluorescence polarization. IP Intra-Peritoneal, MAb Monoclonal Ab, P peptide, PM peptidomimetic, AP aptamer, GQ-ODN G-quartet oligonucleotide, ppm parts per million

5.3.4.1 Peptides and Peptidomimetics

Elucidation of the crystal structure of STAT3β-STAT3β-DNA complex [43] and subsequent studies [25, 44–46] indicated that the SH2 domain facilitates binding to specific pY-peptide motifs within receptor complexes and mediates dimerization of two STAT3 monomers via reciprocal interaction between the SH2 of one monomer and pY-peptide motif, ⁷⁰²AAPY*LKTKFI⁷¹¹, on the other. Strategies to target STAT3 by identifying pY-peptide inhibitors of STAT3 SH2 binding to pY-peptide ligands have been pursued by several groups (Table 5.3) [47]. Turkson et al. showed that pYpeptides based on the sequence PY*LKTK surrounding Y705 within STAT3, inhibited STAT3 DNA binding (IC₅₀=235 μ M) and pulled down STAT3 from lysates of unstimulated cells [45]. Alongside the usual limitations of the peptide approaches, e.g. low cell permeability, instability, and the consequential low biological activities, the requirement for the phosphorylation on Tyr for the inhibitory activity presented another challenge to making this approach biologically useful. Covalently attaching а membrane-translocating sequence (mts) of hydrophobic amino acids (AAVLLPVLLAAP) to the C-terminus of the peptide improved membrane permeability and PY*LKTKmts inhibited STAT3-mediated gene transcription and malignant transformation, and induced apoptosis in v-Src-transformed NIH3T3 fibroblasts albeit at 1 mM concentration [45, 48], underscoring the potential difficulty of converting this approach into an effective therapeutic modality. The exploration of peptidomimetic and phosphotyrosine (pY) mimic approaches led to the identification of ISS 610, a peptidomimetic analog of the tripeptide, PY*L [49], the minimal peptide from PY*LKTK that was required for STAT3 inhibition (IC₅₀=182 μ M). PY*L mimic, ISS 610, better disrupted STAT3 DNA-binding activity (IC_{50} =42 µM) [45, 49], and had increased STAT3 selectivity, (STAT1 IC₅₀=310 µM; STAT5 $IC_{50} = 285 \mu M$) but still had weak intracellular inhibitory properties ($IC_{50} = 1 mM$), due to poor membrane permeability. The abysmal intracellular performance of the peptide forced the group to employ computational modeling to probe the binding of ISS 610 to the STAT3 SH2 domain, which led to generation of the oxazole-based small molecule S3I-M2001 having increased membrane permeability but similar STAT3 DNA binding inhibition (IC₅₀=79 μ M), loss of specificity (STAT1 $IC_{50}=159 \mu M$), but improved intracellular activity [50]. S3I-M2001 reduced pY-STAT3 levels, DNA-binding, nuclear translocation, and transcriptional activity in NIH3T3/v-Src fibroblasts and human breast carcinoma cells at 50–100 μ M. Cell growth inhibition ability was still weak (IC₅₀ = 100 μ M), including inhibition of cell growth, survival, and metastasis of NIH3T3/v-Src fibroblasts and human breast and pancreatic carcinoma cells with increased pY-STAT3. But importantly, it showed a significant regression of MDA-MB-231 xenografts at 5-20 mg/kg [50].

Another peptide-based approach used pY-peptides derived from STAT3 SH2 domain interacting growth factor or cytokine receptors, e.g. EGFR and gp130, to block SH2-pY-peptide ligand interaction. Shao et al. showed that a phosphododeca-peptide (PDP) based on the sequence surrounding Y1068 within the EGFR could directly bind non-phosphorylated STAT3 and inhibit pY-STAT3 DNA binding,

ligand-stimulated STAT3 activation, and TGF α /EGFR-mediated autocrine growth in cancer cells [25]. Examining the structural basis for the specificity of STAT3-SH2 for pYXXQ peptides revealed that only pY-peptides containing +3 Q (not L, M. E or R) bound to wild-type STAT3-SH2 which required its K591 or R609 residues, whose side-chains interact with the peptide pY, and E638, whose amide hydrogen bonds with oxygen within the +3 Q side-chain when the peptide ligand assumes a β turn [25, 51].

Another approach found gp130-derived STAT3-inhibitory pY-peptide Y*LPQTV and several modified versions, including hydrocinnamoyl-Tyr (PO3 H2)-Leu-*cis*-3,4-methanoPro-Gln-NHBn [44, 52], that showed potent inhibition of STAT3 DNA-binding activity (IC₅₀=0.15–0.29 μ M). The peptidomimetic CJ-1383 developed from these, inhibited constitutive pY-STAT3 and inhibited growth of breast cancer cell lines (IC₅₀=3.6–11.2 μ M). PM-73G, another peptidomimetic developed from Y*LPQTV, also showed a low micromolar IC₅₀ of pY-STAT3 reduction in cancer cells, inhibited their growth, and blocked xenografts formation [53, 54].

The peptide aptamer APT_{STAT3}-9R, which has a tryptophan zipper scaffold attached to a STAT3-binding peptide and a cell-penetrating motif, was screened from a randomized peptide library [55]; it specifically interacted in SPR assays with the STAT3 dimerization domain (K_d =231 nM), reduced levels of pY-STAT3, DNA binding, and transcriptional activity [55] and blocked the growth of A549 cells *in vitro* (IC₅₀=10–20 µM) and *in vivo*. Another aptamer, the recombinant STAT3 inhibitory peptide aptamer (rS3-PA) also decreased pY-STAT3 levels, inhibited growth of cancer cells *in vitro*, and reduced Tu9648 xenograft growth [56–59]. Although partly a peptide, these aptamers differ in their mode of action from peptide inhibitors [47].

A phosphate binder, e.g. Lewis acidic metal–picolylamine complex, was shown to act as a SH2-proteomimetic and disrupt pY-peptide–STAT3 complexes and also was potent in its anti-STAT3 activity ($IC_{50}=15-128 \mu M$) as well it ability to inhibit growth of various cancer cells ($IC_{50}=11-100 \mu M$) [60].

5.3.4.2 Small-Molecules

Despite having potent STAT3-inhibitory activity, peptides and peptidomimetics continue to suffer the limitations of *in vivo* instability and poor membrane permeability. Most of the peptides have not been tested in xenograft models and those that were tried, with the exception of rS3-PA, had to be administered intratumorally (IT), limiting their effective use *in vivo* [47]. Nevertheless, these studies provided the proof of concept that the STAT3-SH2/pY-peptide interaction was amenable to targeting and provided the impetus for many programs engaged in designing small molecules for this purpose.

SH2 inhibitors resulting from rational design or high-throughput screens. A structure-based virtual screening of ~425,000 compounds from four different chemical libraries followed by examination of 100 of the first 200 compounds in an *in vitro* STAT3-luciferase assay identified STA-21, a deoxytetrangomycin, with potent cell growth inhibitory activities (IC₅₀=12.2/18.7 μ M in DU145/PC3, respectively).

Modeling studies suggested that STA-21 binds to the SH2 domain of STAT3 and forms a number of hydrogen bonds with residues that form the pocket that binds the pY residue, including Arg-595, Arg-609, and Ile-634, and thus inhibits STAT3 dimerization, nuclear translocation, DNA-binding, gene transcription, and inhibits growth of breast and soft tissue sarcoma cell lines [61-63] with constitutively activated STAT3. Unexpectedly, STA-21 only minimally reduces levels of constitutively phosphorylated STAT3. The group also identified Compound1, a derivative of STA-21 [61], with similar STAT3 and cell growth inhibitory properties. Another slightly more potent structural analogue LLL-3 had better cellular permeability than STA-21 and inhibited growth of glioblastoma (IC₅₀=10-20 μ M), prostate cancer $(IC_{50}=11.3 \mu M)$, and CML cells $(IC50=6.3 \mu M)$. Intratumoral injection of LLL-3 also inhibited intracranial glioblastoma xenografts in nude mice and increased their survival [64]. The acetyl group of LLL-3 was then replaced with sulfonamide to develop another STAT3 inhibitor, LLL-12 [65-73]. LLL-12 reduces pY-STAT3 levels (IC₅₀= $0.16-3.09 \mu$ M) and the growth of various cancer cell lines *in vitro* including osteosarcoma cell lines U2Os, SAOS2, and SJSA (IC₅₀=0.3-0.8 µM,), breast cancer cell lines MDA-MB-231 and SKBR3 (IC₅₀=0.97-3.1 µM,), pancreatic cancer cell lines HPAC and Panc-1 (IC₅₀=0.16-0.29 µM), glioblastoma cell lines U87MG and U373MG (IC₅₀=0.21–0.86 μ M) and myeloma cell lines U266 and ARH-77 (IC₅₀= $0.49-1.9 \mu$ M), as well as their xenografts [66, 69, 70, 72].

Stattic (Stat three inhibitory compound) was another early small molecule STAT3 inhibitor discovered by high-throughput screening of chemical libraries [74]. Stattic selectively inhibited STAT3 binding to pY-peptide (GY*LPOTV; $IC_{50}=5.1 \mu M$) and blocked IL-6-induced STAT3 activation, nuclear accumulation, and DNA-binding activity (IC50=20 μ M). It efficiently blocked the growth [74–76] of several cancer cell lines with increased levels of pY-STAT3 (IC₅₀= $0.43-5.6 \mu$ M), as well as UM-SCC-17B orthotopic xenografts [76]. Stattic was used as an adjuvant to sensitize radioresistant esophageal squamous cell carcinoma (ESCC) cells and xenografts to radiation [77], and to sensitize ovarian cancer cells to cisplatin [78]. A structure-activity relationship (SAR) analysis revealed that saturation of the vinyl sulfone leads to loss in activity. In addition, the presence of 2 mM dithiothreitol (DTT), a nucleophile donor, abrogated STAT3 inhibitory activity of Stattic, suggesting the nucleophilic attack of the sulphonic double bond by a cysteine in the STAT3 SH2 domain [74]. Recently, MS-based studies using high quantities of Stattic (800 µM; 10 µM of pY-STAT3) suggested that eight molecules of Stattic bind to one pY-STAT3 scaffold and identified Cys468 as one possible alkylation site [79]. However, a more recent paper [75] reported covalent binding of nine Stattic molecules to one unphosphorylated core STAT3 protein molecule at a lower concentration (50 µM/10 µM STAT3). Four or five of the nine covalently-modified residues are cysteines, but Cys468 and Cys542 were not among these [75]. A recent report by Sanseverino et al. indicated that Stattic targets other STAT proteins, including STAT1 and STAT5 [80].

Another STAT3 inhibitor resulting from structure-based high-throughput virtual screening of the National Cancer Institute (NCI) chemical libraries was S3I-201/NSC74859. In modeling studies, S3I-201 docked to the pTyr binding site of STAT3-SH2 domain through its salicylic acid moiety, inhibited STAT3 DNA-binding (IC₅₀ = 86 μ M), and inhibited proliferation of several cancer cell lines, including hepatocellular carcinoma, breast cancer, and prostate cancer albeit with high IC₅₀s (100–300 µM) [81, 82]. However, it successfully inhibited growth of MDA-MB-231 xenografts at a dose of 5 mg/kg [82]. Genetic Optimization for Ligand Docking (GOLD) studies suggested suboptimal interaction between \$31-201 and \$TAT3. To improve this interaction, several molecules were subsequently developed [83, 84], many of which showed higher potency in STAT3 DNA binding inhibition assays (IC₅₀=18.7-51.9 μ M) and disruption of STAT3-pY-peptide interactions (Ki = $15.5-41 \mu$ M). S3I-201.1066 (or SF-1066) was the most potent in this series; it was demonstrated to directly bind STAT3 ($K_d = 2.7 \mu M$) and to inhibit growth of multiple cancer cell lines with greater potency than S3I-201 (IC₅₀=35-48 μ M) [85, 86]. Sixteen novel sulfonamide analogues of SF-1066 were subsequently characterized; of these, BP-1-102 [87, 88] effectively inhibited STAT3 DNA binding (IC₅₀=6.8 μM), which was a 5-fold improvement over SF-1066 [83, 84], resulting in better cell growth inhibition (IC₅₀ = $10.9-22.7 \mu$ M). BP-1-102 was orally bioavailable and effectively limited growth of STAT3-dependent tumor xenografts [88]. Known STAT3 dimerization-disrupting small-molecules, including S3I-201, were then subjected to GOLD analysis and a 3D quantitative structure-activity relationship (QSAR) pharmacophore model adopted to predict optimized STAT3 inhibitors. This analysis identified 2,6,9-trisubstituted purine scaffolds [89] as a promising choice of structural scaffold for projecting functionality into the three corners of the most important SH2-domain subpocket A, which contains the key pTyr705-binding residues and is composed of the polar residues Lys591, Ser611, Ser613 and Arg609 [90]. Select purine scaffolds, e.g. S3I-V3-31, S3I-V3-32, S3I-V3-33, S3I-V3-34, and S3I-V4-01, showed good affinities ($K_{\rm D}$, 0.8-12 µM) for purified, non-phosphorylated STAT3, inhibited STAT3 DNAbinding (IC₅₀ = $27 - 84 \mu$ M) and intracellular phosphorylation (IC₅₀ = $20 - 60 \mu$ M) and suppressed growth of transformed cells ($IC_{50} = 41 - 80 \mu M$) with increased constitutive STAT3 activity [89]. Recently, another S3I-201 analog, S3I-1757, was described that was capable of inhibiting STAT3-pYpeptide binding $(IC_{50} = 13 \ \mu M)$; however, it had only modest potency for decreasing levels of nuclear pY-STAT3 and STAT3-DNA binding (IC₅₀ \geq 50 μ M) [86].

A library of BP-1-102 analogues containing prodrugs, potential bioisosterses, and salicylic acid mimics was screened for anti-STAT3 and blood-brain barrier permeability properties, which identified 4 inhibitors – SH4-54, SH5-07, SH5-19, and SH5-23. Each had nanomolar IC₅₀s for inhibiting STAT3 binding to pY-peptide [91]. Of these, SH4-54, in which the hydroxyl substituent of the salicyclic acid moiety of BP-1-102 was removed and replaced with hydrogen [91], bound most strongly to STAT3 (K_D = 300 nM). SH4-54 also reduced levels of pY-STAT3 and its downstream transcriptional targets at low nM concentrations and potently targeted glioblastoma brain cancer stem cells (IC₅₀=0.07–0.2 µM). SH-4-54 crossed the blood–brain barrier, reduced pY-STAT3 levels, and controlled glioma tumor growth *in vivo*. In a more recent study, SH4-54 and SH5-07 were tested in gliomas and breast cancer cells [92]. They were found to have increased ability to inhibit STAT3 DNA binding activity compared to BP-1-102 (IC₅₀=3.9 and 4.7 μ M, respectively) and inhibited DNA-binding in cells at 1–3 μ M; however, their ability to reduce levels of pY-STAT3 in cells was much less pronounced (significant reduction not observed below 10 μ M) and did not correlate with the ability to block DNA-binding and/or STAT3-regulated gene expression. This lack of correlation within the context of constitutively-active STAT3 was explained by suggesting that disruption of pre-existing STAT3:STAT3 dimers, which directly leads to lower DNA-binding activity, has a non-linear relationship with the turnover of disrupted pY-STAT3 molecules and by suggesting that SH4-54 and SH5-07 could act by binding directly to the STAT3 DBD [92]. In fact NMR data showed that these compounds bind to both SH2 domain and DBD of STAT3, in the later case, most probably to a hydrophobic pocket formed by residues Leu411, Ile386, and Ile439 [92].

Using computer-based ligand screening, our group docked 920,000 compounds from 8 chemical libraries into the p-Y-peptide pocket within the STAT3 SH2 domain and identified three hits, C3, C30, and C188 [93]. C188 demonstrated the greatest activity of the three [93–95] and inhibited STAT3-pY-peptide binding in an SPRbased assay (IC₅₀=7.5–20 μ M; calculated K_i=37.3 nM), inhibited G-CSFstimulated increased pY-STAT3 levels in Kasumi-1 cells (IC₅₀=16.2 μ M) and induced apoptosis in pY-STAT3-high breast cancer cells (ED₅₀=0.7–3.9 μ M) [93, 94, 96]. Hit-to-lead strategies focused on C188 [93–96] led to C188-9, which demonstrated improved potency and was non-toxic and orally bioavailable [95–98]. C188-9 binds to STAT3 with high affinity (K_D=4.7±0.4 nM) in microscale thermophoresis assays and potently inhibited STAT3 binding to its pY-peptide ligand (IC₅₀=2.5 μ M, SPR; K_i=12.4 nM), inhibited G-CSF-stimulated increased pY-STAT3 levels (IC₅₀=3.7 μ M), and reduced constitutive pY-STAT3 levels (IC₅₀~4 nM) in A549 cells [99].

Shin et al. searched a library of natural compounds using a STAT3-luciferase assay and identified Cryptotanshinone as a STAT3 inhibitor. Cryptotanshinone is derived from the roots of *Salvia miltiorrhiza*, known as Bunge or Danshen. Cryptotanshinone reduced levels of pY-STAT3 in HCT 116 colon cancer cells (IC_{50} =4.6 µM) and in breast, prostate, and cervical cancer cell lines [100]. Cryptotanshinone inhibited growth of multiple cancer cell lines, including myeloma, glioma, NSCLC, colorectal, and pancreas (IC_{50} =5.8–15.1 µM) and induced cancer cell apoptosis [100–105]. It was also found to synergize with various drugs, including imatinib and cisplatin in several cancers [103, 106–109]. Binding studies suggested that cryptotanshinone directly interacted with the STAT3 SH2 domain of STAT3 to inhibit STAT3 phosphotyrosylation and prevent STAT3 dimerization and nuclear translocation [100].

Matsuno et al. [110] identified a *N*-[2-(1,3,4-oxadiazolyl)]-4 quinolinecarboxamide derivative, STX-0119, as a novel STAT3 dimerization inhibitor by virtual screening using a customized version of the DOCK4 program and the STAT3 crystal structure. The top 136 hits identified were examined in a STAT3-dependent luciferase reporter gene assay and a fluorescence resonance energy transfer-based STAT3 dimerization assay. STX-0119 inhibited STAT3-reporter activity (IC₅₀=74 μ M), downregulated STAT3-regulated genes, and inhibited growth of multiple hematological cancers (IC₅₀=1.4–18.3 μ M), as well as glioblastoma cell lines (IC₅₀=6.6–44.5 μ M) but did not affect STAT3 phosphorylation [110–113]. A docking model of STX-0119 [110] bound to the STAT3-SH2 domain revealed that the 2-Ph ring of STX-0119 inserted into a hydrophobic cleft in proximity to the pY-peptide binding pocket. Oral administration of STX-0119 effectively abrogated the growth of human lymphoma and glioblastoma xenografts [112, 113].

In another program, 437 of 7000 compounds that docked to a region of a STAT3 distinct from STAT1 in a previous molecular dynamics simulation [114] were further screened on the basis of favorable binding parameters involving ligand buried surface area (>75%), and van der Waals and hydrogen bond energies. This resulted in identification of 52 compounds that were tested for the ability to block STAT3 DNA binding by EMSA [79]. Of these 52 compounds, C36 was identified as the most potent hit (IC_{50} =30–50 µM). Subsequent library-screening using C36 as a template yielded another 48 structurally similar compounds. After further screening for STAT3 DNA binding inhibition and elimination of some leads because of low solubility, C48 emerged as the lead (IC_{50} =10–50 µM); it reduced constitutive pY-STAT3 levels, DNA binding, and transcription of STAT3 gene targets in breast cancer tumors in a syngeneic mouse model [79]. Site-directed mutagenesis and multiple biochemical experiments showed that C48 is a covalent modifier of STAT3 and alkylates Cys468, a residue at the DNA-binding interface.

Our group used a high-throughput fluorescence microscopy search to identify compounds in a drug-repositioning library (Prestwick library) that block ligandinduced nuclear translocation of STAT3 and identified piperlongumine (PL), a natural product isolated from the fruit of the pepper *Piper longum* [115]. PL inhibited STAT3 nuclear translocation (IC₅₀=0.9–1.7 μ M), inhibited ligand-induced (IC₅₀=0.9–2.7 μ M) and constitutive (IC₅₀=0.4–2.8 μ M) STAT3 phosphotyrosylation, and modulated STAT3-regulated genes. SPR revealed that PL directly inhibited binding of STAT3 to its pY-peptide ligand (Ki 68nM). PL inhibited anchorage-independent growth of multiple breast cancer cell lines with increased levels of pY-STAT3 or total STAT3 (IC₅₀=0.9–1.7 μ M), and induced apoptosis. PL also inhibited mammosphere formation by cancer cells in patient-derived xenografts (PDX) and its anti-cancer activity was linked to its STAT3-inhibiting activity. PL was non-toxic in mice up to a dose of 30 mg/kg/day for 14 days and blocked growth of breast cancer cell line xenografts in nude mice.

SH2 inhibitors identified using fragment-based drug design (FBDD). Most of the above molecules resulted from high-throughput screens (HTS) based on rational design followed by lead optimization. Using biophysical methods like NMR and X-ray crystallography, fragment-based drug design (FBDD) has recently emerged as a successful alternative to HTS-based drug discovery [116–118]. Several groups have combined structural motifs of reported STAT3 inhibitors as part of a fragment-based drug design (FBDD) program to develop more potent STAT3 inhibitors. These and other FBDD STAT3 inhibitor programs are described below.

The intention of one such program was to design peptidomimetics that would bind to the pTyr705-binding site and a side pocket within the STAT3 SH2 domain. A urea linker was used to form H-bonds with residues between the two sites, which are rich in

H-bond acceptors and donors. Ten compounds were designed and XZH-5 emerged as the most promising. The features of XZH-5 were: (i) a carboxylate group that mimics the pTyr705 phosphate group; (ii) a fluorobenzene group able to form hydrophobic interactions with the side pocket; and (iii) a combination of urea and peptidyl linkers that spanned the right distance and were capable of forming H-bonds. XZH-5 was shown in a docking model to bind to the SH2 domain of STAT3 and prevent STAT3 phosphorylation at Tyr705, leading to inhibition of downstream STAT3 activities and apoptosis in multiple cancer cell lines including breast, pancreatic, hepatocellular and rhabdomyosarcoma (IC₅₀ \approx 15–50 µM) [119–121].

Li et al. used a novel approach combining Multiple Ligand Simultaneous Docking (MLSD), drug scaffolds, and drug repositioning to find potent STAT3 inhibitors. Briefly, their approach consisted of: (i) building a small library of drug scaffolds for the binding hot spots within the STAT3 SH2 domain; (ii) MLSD screening of privileged drug scaffolds to identify optimal fragment combinations; (iii) linking of the fragment hits to generate possible hit compounds as templates; and (iv) similarity searches of template compounds in drug databases [122] to identify existing drugs as possible inhibitors of STAT3. The above process successfully identified two synthetic compounds T2 and T3 and the repositioning search yielded celecoxib. Each reduced the growth of HCT-116 (IC₅₀=9.0, 10.1 or 43.3 μ M, respectively). Further lead optimization produced 5 analogues [123] that were more potent in inhibiting cancer cell line growth (IC₅₀=6.5 μ M for a breast cancer cell line; 7.6 μ M for pancreatic cancer cell lines).

Niclosamide, an FDA-approved anticestodal drug with a very low bioavailability in humans, was identified to inhibit STAT3 activation, nuclear translocation and transactivation [124]. FBDD based on the structure of niclosamide and other STAT3 inhibitors yielded a series of orally bioavailable STAT3 inhibitors including HJC0152 and HJC0123 [125, 126]. HJC0123 inhibited STAT3 activation and promoter activity, growth of breast and pancreatic cancer cell lines *in vitro* (IC₅₀=0.1– 1.2μ M) and MDA-MB-231 xenografts [125] and also potentiated doxorubicin- and gemcitabine-mediated killing [119].

More recently Yu et al. developed another STAT3 dimerization inhibitor by utilizing FBDD. They linked the naphthalene-5,8-dione-1-sulphoneamide fragment of LLL-12 (thought to bind to the pTyr705-binding pocket within the STAT3 SH2 domain) to a dimethyl amine that contained various R groups and generated 5 different compounds. LY5, the most potent compound, inhibited growth of U2OS and RD2 cancer cells (IC₅₀=0.5–1.39 μ M) better than parent compound LLL-12; it also was easy to synthesize and possessed more drug-like properties than LLL-12 [127].

5.3.5 Inhibitors Targeting the STAT3 DNA-Binding Domain (DBD)

Recognition of specific DNA elements is one of the cardinal features of transcription factors (TFs). The DBD of STAT3 is known to bind two types of DNA elements within promoter sites to mediate its transcriptional activities—serum-inducible elements (SIE) and gamma-activated sequences (GAS) [22, 128]. Concerted efforts at blocking this interaction have been underway for some time. The following sections describe these efforts (Table 5.3).

5.3.5.1 Decoy Oligonucleotides

Decoy oligonucleotides are double-stranded or duplex DNAs that mimic TF promoter elements. Their use was first described by Bielinska et al. in 1990 as a way of modulating gene transcriptional activity in the cell [129]. Duplex ODNs act by competitively inhibiting TF binding to their endogenous promoter elements. This strategy has been used to target aberrant TF signaling in various diseases and currently represents an active area of research [130, 131]. Following successful demonstration of STAT6 inhibition using this method [132], Leong et al. reported the use of a 15-mer duplex ODN modeled on the c-fos promoter sequence (SIE) to target STAT3 [133]. They demonstrated reduction in STAT3 mediated gene expression that led to growth inhibition of head and neck cancer cells. Other researchers also have shown similar results with other STAT3-associated cancers including, ovarian cancer, glioma, prostate cancer and hepatocellular carcinoma. [134-138]. Although duplex ODNs appeared to have minimal toxicity in primate models [139], instability in plasma was a limitation to their in vivo efficacy. To overcome these limitations, the Grandis lab developed a cyclic STAT3 decoy ODN linked to hexa-ethylene glycol. This ODN showed improved stability and retained antitumor efficacy with minimal toxicity when administered intravenously in a preclinical head and neck cancer models [140]. Creating a peptide nucleic acid (PNA) by adding a novel cell-penetrating peptide (CPP) consisting of a glutamate peptide linked to the N-terminus of the nuclear localization signal (NLS) from Oct6 transcription factor, to the minimal 15-mer linear ODN 13410A (Glu-Oct6-13410A) required for inducing cell apoptosis [137, 141] showed better cell-uptake and better apoptosis inducing capacity [141].

5.3.5.2 G-Quartet Oligonucleotides

G-quartet oligonucleotides (GQ-ODN) constitute another approach that is mechanistically analogous to ODNs in inhibiting the transcriptional activity of STAT3. G-quartets oligonucleotides are random coils outside the cell that complex with K⁺ ions within the cell form stable box-like structures composed of stacks of 4 G-bases that are hydrogen bonded via hoogensteen pairings [142]. These structures are normally found in telomeres and promoter regions of many genes. G-Quartets are known to associate with DNA binding proteins [143], thus, making them ideal candidates to be used for targeting DNA binding activity of TFs. In 2003, Jing et al. developed a GQ-ODN, that inhibited IL-6 induced DNA binding activity of STAT3 and suppressed expression of STAT3 mediated genes [144]. Subsequent work showed that GQ-ODNs inhibited proliferation in a wide variety of tumor cell lines, including prostrate, breast, head and neck, non-small cell lung cancer, and T-cell leukemia with IC₅₀s ranging from 5 to 7 μ M [145, 146]. Although initial studies predicted that GQ-ODN destabilized dimer formation, the mechanism by which GQ-ODN disrupt and abrogate STAT3 activity remains unclear since subsequent work appeared to show that the GQ-ODN inhibited STAT3 transcriptional activity by preferentially binding to its DNA binding domain rather than the SH2 domain [147]. Nevertheless, it is clear that they show promise as targeted anti-cancer agents. GQ-ODN have not garnered as much interest as small molecules, perhaps due not having properties suitable for systemic delivery. However, this may change as novel nucleic acid delivery systems currently being developed based upon siRNA therapeutics are employed [148].

5.3.5.3 Platinum-Based Inhibitors

The antitumor effects of most platinum compounds are thought to result from their ability to combine with DNA and form complexes that are toxic to cells. In contrast, platinum IV compounds-CPA-1, CPA-7, and platinum (IV) tetra-chloride, were shown to inhibit STAT3 DNA binding activity in an EMSA assay [149]. Importantly, IS3 295, a member of the same group identified from a screen of the NCI 2000 diversity set of compounds, was reported to bind STAT3 and prevent its interaction with specific DNA response elements in a dose dependent manner with an IC₅₀ of 1.4 µM [150]. All platinum IV compounds mentioned here preferentially inhibit STAT3 and to some extend STAT1 DNA binding, but showed no activity against STAT5 DNA binding, reducing the possibility that this is a nonspecific DNA targeting effect. The compound suppressed STAT3 dependent gene activation and showed antiproliferative effects against v-Src transformed fibroblast and a variety of breast cancer cells. Of note, CPA-7 also was recently shown to be effective against both gliomas and melanomas in mouse tumor models [151]. Biochemical data also suggests that inhibition of DNA binding by IS3 295 is irreversible, which is not surprising because platinum compounds are known to react with thiol groups [152]. The fact that IS3 295 is selective for STAT3 over STAT5 suggests that covalent modification involves a unique site within STAT3 to which the compounds first binds non-covalently prior to crosslinking. It is important to note that this kind of selectivity implies a "hotspot" within the DNA binding domain [153]. It would therefore be interesting to pinpoint the reactive thiol groups at the DNA interface. This could yield important information that would help drive the development of other compounds directed at STAT3 DNA binding. It remains to be seen what proteins other than STAT3 this class of compounds also targets in order to better assess the possibility of unacceptable levels of off-target effects.

5.3.5.4 Small Molecule Targeting

In contrast to the SH2 binding domain, which presents a well-defined pY binding site that is amenable to targeted small-molecule inhibition, the DNA binding domain has historically been considered challenging, partly due to the belief that disrupting DNA binding would not achieve the desired level of selectivity necessary to discriminate among TFs. In addition, protein DNA interactions of TFs were conventionally deemed undruggable due to the lack of obvious targetable pockets within their binding interfaces. Using high quality structural data of the DBD of STAT3 [43], Huang et al. applied an improved virtual ligand screen to identify a small molecule called InS3-54 (4-[(3E)-3-[(4-nitrophenyl)-methylidene]-2-oxo-5phenylpyrrol-1-yl] benzoic acid) that non-covalently binds to the DBD of STAT3, thereby competitively inhibiting its DNA-binding activity [154]. To ensure selectivity towards STAT3, top scoring molecules from the initial screen were docked on to the DBD of STAT1. InS3-54 was selected as the most selective compounds that had the ability to inhibit STAT3 dependent gene expression in a luciferase reporter assay. In addition, InS3-54 was demonstrated to inhibit DNA binding of pY-STAT3 dimer (IC₅₀ = 20 μ M) by non-covalently binding to the DBD of STAT3. Although efficacious in inhibiting proliferation of various cancer cell lines, the IC_{50} (<6 μ M) was markedly lower than that for its inhibition of DNA binding, which suggested the possibility of off-target effects. To address this issue, Zhan's group made further activity guided hit-to-lead optimizations that resulted in InS3-54A18, a compound that showed improved IC_{50} for growth inhibition, better specificity, and more favorable pharmacological properties [155]. When orally administered, inS3-54A18 effectively inhibited STAT3 activity in mice leading to a reduction in lung xenograft tumor growth.

Another example of a small molecule presumed to work by the directly targeting the STAT3 DBD is a synthetic analog of curcumin, HO-3867, that has been shown to inhibit DNA binding activity in an ELISA assay [156]. HO-3867 inhibited STAT3 transcriptional activity, was preferentially active in a dose dependent manner in inhibiting growth of cancer vs. normal cell lines, and inhibited xenograft tumor growth. However, this compound appears to have minimal selectivity and was shown to inhibit upstream kinases [157, 158]. To advance further, the specificity of HO-3867 likely will need to be improved.

Galiellalactone, a fungal metabolite from the ascomycete, *Galiella rufa*, inhibited the IL-6/STAT3 signaling pathway [159, 160]. Galiellalactone inhibited STAT3-mediated luciferase induction (IC₅₀~5 μ M), reduced STAT3-regulated gene induction, and blocked the growth of various cancer cell lines e.g. DU145, *in vitro* (IC₅₀=3.4 μ M) and *in vivo* [160–162]. Galiellalactone did not prevent dimerization of the STAT3 monomers and showed no significant inhibition of phosphorylation; it appears to mediate its STAT3 inhibitory effect by covalently modifying residues Cys-367, Cys-468, and Cys-542 in the DBD and directly blocking the binding of STAT3 to DNA [162].

5.3.5.5 Peptides and Aptamers

Like STAT3 SH2-directed aptamers, DBD-directed peptide aptamer DBD-1 and its protein transduction domain (PTD)-fused analog, DBD-1-9R could also target STAT3 and reduce growth of STAT3-dependent cells [163].

5.3.6 Inhibitors Targeting the STAT3 N-Terminal Domain

Although tyrosine phosphorylation precedes STAT3 activation, it has been shown that even nonphosphorylated STAT3 contributes to carcinogenesis through regulation of gene expression [164–166]. In addition, protein–protein interactions between STAT3 and other transcription factors also can affect the repertoire of transcribed genes and contribute to tumorigenesis [167]. The N-terminal domain mediates protein-protein interactions during binding of STAT3 dimers to DNA and in the assembly of the transcriptional machinery, including the interactions between two STAT3 dimers to form a tetramer, as well as with other transcriptional factors and regulators [43, 168, 169]. The N-terminal domain interaction with other transcription factors/cofactors leads to formation of enchanceosomes [170] and its interaction with histone-modifier proteins induces changes in chromatin structure [171]. These complex interactions together maximize STAT3-dependent transcriptional control in normal and cancer cells [167]. Moreover, the NTD also has been implicated in the interaction of STAT3 with peptide hormone receptors and the nuclear translocation of STAT3 [172-174]. Short peptides (Table 5.3) derived from helices within the N-terminal domain, especially helix-2 (ST3-H2A2), recognized and bound to STAT3, but not to other STAT members, and inhibited STAT3 transcriptional activity without affecting levels of pY-STAT3 [169, 175, 176]. The cell-permeable form of this peptide (Hel2K-Pen), generated by its fusion with Penetratin (a protein transduction motif with sequence RQIKIWFPNRR-Nle-KWKK-NH2), selectively induced cell growth inhibition and apoptosis of human MDA-MB-231, MDA-MB-435, and MCF-7 breast cancer cells (IC₅₀~10 µM) through robust induction of pro-apoptotic genes, as a result of altered STAT3 chromatin binding [175–177]. Issues of peptide stability and bioavailability still remain major challenges to be overcome for this unique approach to STAT3 inhibition to advance.

5.3.7 Inhibitors that Target Endogenous STAT3 Negative Regulators

In normal cells, the level and duration of STAT3 activation is controlled by a variety of mechanisms including dephosphorylation of receptor complexes and nuclear STAT3 dimers by protein phosphatases (PTPases), interaction of activated STAT3 with members of the protein inhibitors of activated STAT (PIAS) family, and the actions of suppressor of cytokine signaling (SOCS) protein members that inhibit and/or degrade JAKs [178, 179]. Many different STAT3 inhibitors seem to work through modulating the activity of these endogenous regulators (Table 5.4).

Several protein tyrosine phosphatases, including members of the Src homology 2 (SH2)-domain containing tyrosine phosphatase family (SHP-1 and SHP-2) and protein tyrosine phosphatase 1B (PTP-1B) [180–182] can deactivate STAT3 signaling through direct dephosphorylation of pY-STAT3, thus, are useful targets [183]. In many cancer cells, loss of regulation by these, lead to constitutive STAT3 activation,

		, ,					
				IC50 STAT3	IC50 cell growth	Pre-clinical animal	
Inhibitors	Type	Description	Blocks	inhibition (assay)	inhibition, cell	models	Ref
Endogenous STAT3 in	hibitor m	odulators					
AdCN305- cmsOCS3	RV	Recombinant adenovirus	pY, DM, DR GT	NA	NA	5 × 10 ⁸ PFU/dose, alternate davx 4	[206, 2071
						SW620, BEL7404	
						xenografts	
Calyculin A	SM	PP2A inhibitor, increases	pY, GT	80 nM ^E , constitutive	NA	NA	[208–
		pS-STAT3, decreases pY-STAT3		pSTAT3, T lymphoma			210]
SC-1/SC-43/SC-49	SM	Increases SHP1 activity to	pY, DM,	$1-5^{\rm E} \mu M$, constitutive	$2-5^{E} \mu M, HCC$	10 mg/kg, 28d, PO,	[186,
		reduce pSTAT3	DB, GT	pSTAT3, HCC and breast cancer cells	and breast cancer	MDA-MB-468 venoorafie	188, 1801
				010431 041100 00113		volugians	[COT
TPA	SM	Phorbol ester, activates PKC-regulated phosphatase and inhibits nSTAT3	pY, DM, DB, GT	NA	NA	NA	[211]
DEA /Dictalat	ΔD	Audiototic outoline		NI A	NI A	200 a.c. 2 hule 6 mles	[440
F14 (F1atelet Factor 4)	CN	upregulates SOCS3 and	pı, uu, GT	V M	E M	IV, OPM2 xenografts in mide mice	450]
Numberide boood shine		C IVIT CA SHOTHIN					
					0.05 1.101	101 4	1000
Allu-Selise (AZD9150)	OCA	no ougonucreouse anusense molecule (ASO) targeting the	pr, uw, DB, GT	0.011 µM, 51A15 mRNA A431	0.00 July, A431	20 mg/kg, A401 xenografts	[667]
(70, NCT01839604)		3' untranslated part of STAT3					
CTLA4 ^{apt} -STAT3	AP-	CTLA4 ^{apt} fused to a STAT3-	NA	0.5 nM, STAT3	NA	782.5 pmol/dose/	[225]
siRNA	ASO	targeting siRNA, internalized		mRNA in CD8 T		mouse, IV, melanoma,	
		into tumor-associated CD8+ T		cells		RCC, lymphoma	
		cells and silencing of STAT3				colon carcinoma	
						AUIUGIAIUS	

 Table 5.4
 Other STAT3 inhibitors with varying modes of action

127

Table 5.4 (continued)							
				IC50 STAT3	IC50 cell growth	Pre-clinical animal	
Inhibitors	Type	Description	Blocks	inhibition (assay)	inhibition, cell	models	Ref
Other inhibitors with 1	novel mec	chanism					
Capsaicin,	SM	Hot-pepper ingredient blcoks	pY, DM,	$-5-7^{\rm E}$ µM, const	0.05 µM, A431	1 mg/kg, 3/wk, IP,	[232,
N-vanillyl-8-		IL6-stimulated pSTAT3 by	DB, GT	pSTAT3, U266		U266 xenografts	235,
methyl-1		translational inhibition of					451]
nonenamide)		gp130					
PF4 (Platelet Factor	CK	Angiostatic cytokine	pY, DB,	~4 ^E μ M, const	2-4 μM, OPM2,	200 ng, 3/wk, 6 wks,	[449,
4)		upregulates SOCS3 and	GT	pSTAT3, OPM2,	NCI-H929 and	IV, OPM2 xenografts	450]
		inhibits pSTAT3		U266	U266, growth,	in nude mice	
					MTT		
ML116	SM	Novel inhibitor (PubChem	DM,	4.2 μM, IL6-	0.8–33.1 μM,	15 mg/kg, IP,	[452]
		CID-2100018) belongs to the	DB, GT	stimulated STAT3	glioma cells	intracranial GL26	
		thienopyrimidine scaffold		luciferase assay		xenografts	
Note: Information for H	Pre-clinica	al animal models consist of Dose, 1	oute of adn	ninistration, duration (if a	available) and anima	l model used. Information	n for Pre-

phosphorylation at Tyr-705, DM dimerization, NT nuclear translocation, DB DNA-binding, GT gene transcription, IG intra-gastrical, TK tyrosine kinase, IC Abbreviations: E estimated from descriptive data on inhibition, from corresponding reference, NA not available, Ab antibody, SM small molecule, pY STAT3 clinical animal models consist of Dose, route of administration, duration (if available) and animal model used

intra-cranial, PO per Os (by mouth), CK cytokine, IP intra-peritoneal, AP aptamer, ASO anti-sense oligonucleotide, RV recombinant virus

128

e.g. loss of SHP-1 enhances JAK3/STAT3 signaling in ALK-positive anaplastic large-cell lymphoma and in cutaneous T cell lymphoma [184, 185]. Many chemical agents also appear to up regulate SHP-1 activity/expression. As shown in Table 5.4, sorafenib derivatives lacking Raf-1 kinase activity, e.g. SC-1, SC-43, and SC-49 [186–189], appear to reduce levels of constitutive pY-STAT3 (IC₅₀=1–5 μ M) by upregulation of SHP1 leading to inhibition of cancer cell growth *in vitro* (IC₅₀=2–5 μ M) and inhibition of xenografts growth in mice. Many other known JAK/STAT3 inhibitors e.g. betulinic acid [190], guggulsterone [191], 5-azacytidine [192], SC-2001 [193], sorafenib [194], beta-caryophyllene [195], boswellic acid [196], capillarisin [197]. Honokiol [198], dovitinib [199], 1'-acetoxychavicol [200], gambogic acid [201], dihydroxypentamethoxyflavone [202], butein [203], icariside II (a flavonoid icariin derivative) [204] and 5-hydroxy-2-methyl-1,4-naphthoquinone (a vitamin K3 analogue) [205] can enhance the SHP-1 pathway (either by induction of SHP-1 expression or by increase of SHP-1 activity) and show anti-cancer potential.

Adenovirus mediated transduction of the SOCS3 gene also can reduce levels of pY-STAT3 and thereby reduce SW620 and BEL704 xenograft growth [206, 207]. Other known negative STAT3-regulators also could be modulated in a similar way to reduce STAT3 activity.

Woetmann et al. [208] showed that calyculin A, an inhibitor of serine phosphatases and the protein phosphatases (PPs) PP1yPP2A, induces (i) phosphorylation of STAT3 on serine and threonine residues, (ii) inhibition of STAT3 tyrosine phosphorylation and DNA binding activity, and (iii) relocation of STAT3 from the nucleus to the cytoplasm. Similar results were obtained with other PP2A inhibitors (okadaic acid and endothall thioanhydride) but not with inhibitors of PP1 (tautomycin) or PP2B (cyclosporine). There are other reports of a similar inhibition of STAT3 activity by calyculin A [209, 210] but observations with some of the other PP2A inhibitors [209] could not be repeated.

STAT3 activity is, in part, positively regulated by c-Src and negatively regulated by a PKC-activated PTPase(s) in melanoma cells. The tumor-promoting phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) was shown to inhibit melanoma cell growth by suppression of STAT3 activity through upregulation of PTPase(s) and upregulation of PKC [211], which led to a decrease in STAT3 DNA-binding, STAT3 target gene transcription, and inhibition of growth of melanoma cells [211].

5.3.8 Inhibitors with Other Mechanisms of Action

There are numerous examples of agents (Table 5.4) that inhibit STAT3 activity/ oncogenic function, that do not necessarily belong to any of the above groups of indirect or direct STAT3-interacting compounds. These will be discussed in this section.

5.3.8.1 siRNA-Based Inhibitors

Apart from the ODNs, which block the ability of STAT3 DBD to bind the STAT3responsive sequence containing DNA, there also have been concerted efforts at targeting STAT3 mRNA using siRNA and shRNA based methods as outlined below.

Anti-sense therapy. Many antisense oligonucleotide (ASO)-based drugs, which bind to messenger RNA (mRNAs) and inhibit the production of disease-causing proteins, are at various phases of clinical trials. An ASO complementary to apolipoprotein B-100 mRNA, mipomersen sodium (Kynamro), received FDA approval in January 2013 as an adjunct to statin-based lipid lowering therapy [212, 213]. AZD9150 (ISIS-STAT3Rx or ISIS 481464) is a synthetic ASO against STAT3. Information about its pre-clinical development is scant but its testing in clinical trials is summarized below. RNA interference (RNAi) is a natural post-transcriptional gene-silencing (PTGS) mechanism for silencing unwanted genes. The process is initiated by the presence of double-stranded RNA, not a constituent of the normal cell cytoplasm. The dsRNAs are cleaved by dicer, an endonuclease, into 20-25 nucleotide dsRNAs, referred to as short or small interfering RNAs (siR-NAs). The RNA-induced silencing complex (RISC) separates the two strands, and one of these strands then serves as a guide for sequence-specific degradation of complementary mRNA. The utility of this approach is limited due to the short half-life of transfected RNAs. This problem can be circumvented using a DNAdirected RNA interference technique in which a short hairpin RNA (shRNA, a double stranded RNA) is expressed in the cell after insertion of a DNA construct into the nucleus. These shRNAs then enter the RNAi pathway and gene silencing can last for as long as the cell continues to produce the shRNA [214, 215]. This strategy is under evaluation in several clinical trials for the treatment of several diseases including cancers (#NCT01591356, #NCT00363714, #NCT00689065, #NCT00938574). However, data regarding siRNA targeted silencing of STAT genes for cancer therapy are limited to in vitro studies and in vivo studies of animal models only [216-224].

Intracellular therapeutic targets that define tumor immunosuppression in both tumor cells and T cells remain intractable [225]. Administration of a covalently linked siRNA to an aptamer (apt) that selectively binds cytotoxic T lymphocyte-associated antigen 4 [CTLA4(apt)] allowed gene silencing in exhausted CD8⁺ T cells and Tregs in tumors as well as CTLA4-expressing malignant T cells [225]. CTLA4(apt) fused to a STAT3-targeting siRNA [CTLA4(apt)-STAT3 siRNA] resulted in internalization into tumor-associated CD8⁺ T cells overexpressing CTLA-4 [226] and silencing of STAT3, which activated tumor antigen-specific T cells in murine models [225]. Both local and systemic administration of CTLA4(apt)-STAT3 siRNA dramatically reduced tumor-associated Tregs and potently inhibited tumor growth and metastasis in various mouse tumor models [225].

5.3.8.2 Inhibitors Targeting Nuclear Translocation

The role of activated STAT3 as a DNA-binding transcription factor relies on the ability of homodimers to traffic from the cytoplasm to the nucleus [178, 227–231]. Preventing this shuttle of STAT3 dimers could be a way to block STAT3 activity [229]. Importins α 3, α 5, α 7, and β , are involved in passage of STAT3 through the nuclear pore [26, 229]. Once within the nucleus, TC45 dephosphorylates pY-STAT3, which then becomes a substrate for exportin-1–mediated export [229]. Inhibition of exportin 1 by leptomycin B or ratjadone A, has been shown to interfere with nuclear export of STAT3; it reduces pY-STAT3 and STAT3-mediated transcription and causes cells to undergo apoptosis [229]. Although interesting, any small-molecule that inhibits general trafficking across the nuclear membrane is likely to be toxic [229]. Whether an inhibitor of nuclear pore transit can be developed with sufficient STAT3 selectivity remains to be determined.

5.3.8.3 Inhibitor with Novel Modes of Action

There are a few inhibitors, which have very novel mechanisms of action, mostly by way of modulating proteins or pathways indirectly regulating the STAT3 signaling pathway (Table 5.4). E.g. capsaicin has been shown to have anti-carcinogenic effects on various tumor cells through multiple mechanisms including STAT3 inhibition [232–234]. Lee et al. showed that capsaicin treatment of glial tumors induced downregulation of the IL-6 receptor gp130 by translation inhibition, and was associated with activation of endoplasmic reticulum (ER) stress [235]. The depletion of the intracellular pool of gp130 by capsaicin combined with the ER stress inducer led to an immediate loss of the IL-6 response due to short half-life of membrane-localized gp130 [235].

Platelet factor 4 (PF4) is an angiostatic chemokine that suppresses tumor growth and metastasis and is frequently lost in multiple myeloma. Exogenous PF4 treatment not only suppressed myeloma-associated angiogenesis, but also inhibited growth and induced apoptosis in myeloma cells. It has been shown that PF4 negatively regulated STAT3 by inhibiting its phosphorylation and transcriptional activity. Overexpression of constitutively activated STAT3 could rescue PF4-induced apoptotic effects. Furthermore, PF4 induced the expression of SOCS3, an endogenous STAT3 inhibitor, and gene silencing of SOCS3 abolished its ability to inhibit STAT3 activation, suggesting a critical role of SOCS3 in PF4-induced STAT3 inhibi-

5.3.8.4 Other Inhibitors that May Act by Targeting STAT3

There are numerous reports of various compounds, most naturally occurring, that are known to exert powerful anti-tumor effects, through their action on STAT3. However, the mechanistic basis for their anti-STAT3 action is unknown. Some examples are protoepigenone/RY10-4 [236], shikonin [237], paclitaxel [238–240],

vinrelbin [238–240], nifuroxazide [241], icaritin [242–245], and epigallocatechin-3 [246]. These are potent inhibitors that can reduce STAT3 activation and induce growth inhibition and/or apoptosis and in many cases have been proven, in preclinical animal models to reduce tumor growth. Further studies are necessary to elucidate their exact mechanism of action.

In considering this group of compounds, as well as others listed above, it is important to recall that proteases play an important role in STAT3 biochemistry, including its posttranslational modulation [247, 248] and degradation. STAT3 proteases include caspases, calpain, and the proteasome complex. Many compounds induce cell cycle arrest and apoptosis accompanied by reduced pY-STAT3 levels. It is frequently concluded that these compounds target STAT3 but the precise mechanism of STAT3 targeting is not determined. A number of compounds proposed as STAT3 inhibitors exert their antitumor effects by promoting STAT3 protein degradation in cancer cells [249–251]. In addition, pY-STAT3 has been shown to undergo caspase-dependent proteolytic cleavage [252]. Because cysteine proteases, such as caspases and calpain, are well known intracellular effectors of apoptosis, the ability of some purported STAT3 inhibitors to reduce pY-STAT may not be due to direct targeting of STAT3, but rather a reflection of compound-induced apoptosis in which pY-STAT3 levels are reduced by effector proteases within the apoptosis pathway.

5.3.9 Allosteric Effects of STAT3 Inhibitors

Namanja et al. [253] found that pY-peptide interactions with the SH2 domain of STAT3 cause structural and dynamics changes in its LD and DBD. This interdomain allosteric effect likely is mediated by the flexibility within the hydrophobic core of STAT3. In addition, a mutation (I568F) in the LD, identified in a patient with autosomal-dominant hyper IgE syndrome (AD-HIES) induced NMR chemical shift perturbations in the SH2 domain, the DBD and the CCD domain of STAT3, suggesting conformational changes in these domains mediated by a point mutation in a separate domain. Furthermore, they showed that the conformational changes in the SH2 domain seen in the mSTAT3 I568F mutant was accompanied by the reduced affinity of this mSTAT3 for pY-peptide. This effect may help explain the ability of some compounds that bind domains other than the SH2 domain to affect STAT3pY-peptide binding. The recent paper by Mathew et al. [254] using a rhodium-(II)catalyzed, proximity-driven modification approach identified the STAT3 coiled-coil domain (CCD) as a novel binding site for a newly described naphthalene sulfonamide inhibitor, MM-206. Despite binding to the CCD, this compound reduces STAT3 binding to pY-peptide and has structural features of C188, previously shown to reduce STAT3 binding to pY-peptide [93, 94, 96], and BP-1-102, thought to bind to the STAT3 SH2 domain. Findings with MM-206 [254] and STAT3 proteins containing substitutions within the CCD, such as Asp170 [174], suggest that the CCD, like the LD, also may engage in interdomain allosteric effects. Based on these findings, one might need to reconsider notions about how STAT3 inhibitors

demonstrated to bind to STAT3 and to reduce STAT3 activity actually mediate their effects and may change our approach to designing drugs to target this oncogene. The fact that selectivity and mechanisms of action of established STAT3 inhibitors continue to be revisited and clarified [255, 256] reinforces this concept.

5.4 Entry of STAT3 Inhibitors into the Clinic

Attempts to develop peptide inhibitors [25, 44, 45, 51, 257] that target the pYpeptide binding pocket within the STAT SH2 domain [45] quickly followed the elucidation of the crystal structure of STAT3β homodimer [43] and confirmation that STAT3 was an oncoprotein [8]. However, due to their lack of membrane permeability and stability, non-peptidic small molecule inhibitors of STAT3 moved to the forefront of this drug discovery area [61]. Although showing promising pre-clinical activity in vivo, many compounds in this category show activity in the medium-tohigh micromolar range, indicating the need for additional optimization before transitioning to clinical trials involving systemic administration. STA-21 has completed phase I/II trials in patients with psoriasis [258] with effective concentrations being achieved at affected skin sites through topical application. Several agents that systemically target the IL-6R/JAK/STAT3 signaling pathway are at various stages of clinical trials (Table 5.5) for a cancer indication. STAT3 upstream antagonists include the IL-6-neutralizing MAb siltuximab [259], the IL6R-anatgonist MAb tocilizumab [260, 261], the JAK inhibitor ruxolitinib [262-268], AZD1480 [41, 269-272], OPB-31121 [273-278], fedratinib/SAR302503 [279-282], BSE-SFN [283], pacritinib/SB1518 [284, 285], and the dual JAK2/gp130 inhibitors WP1066 [286-290] and OPB-51602 [291]. Direct STAT3 inhibitors include the STAT3decoys [292] and the STAT3-antisense oligonucleotide based inhibitor ISIS-STAT3Rx (AZD9150) [293]. The third group of compounds includes two re-purposed drugs that also inhibit STAT3-the antiparasitic drug pyrimethamine [283] and the HMG-CoA inhibitor Simvastatin [294–296].

The importance of the IL-6/JAK/STAT signaling pathway in many human malignancies has, in part, spurred development of several IL-6 and IL-6 receptor inhibitors for cancer treatment [297–299]. Siltuximab (CNTO 328), the chimeric anti-IL-6 MAb has been approved by the FDA in 2014 for the treatment of patients with HIVnegative and HHV-8-negative multicentric Castleman's disease (MCD), a lymphoproliferative disorder with germinal center hyperplasia and high morbidity, at a dose of 11 mg/kg every 3 weeks [259, 300]. In a Phase I study, 18 of 23 patients (78%) had complete response, and 12 patients (52%) demonstrated objective tumor response [301]. In a Phase II study, with HIV-negative and HHV-8-seronegative patients with symptomatic MCD (n=140), durable tumor and symptomatic responses occurred in 18 of 53 patients (34%) in the siltuximab group and none of 26 in the placebo group [302]. A Japanese Phase 1 trial [303] in multiple myeloma patients showed some responses, but in other studies the 11 mg/kg dose did not improve progression-free survival or achieve other measures of response [259]. Out of the 16

		0			
Inhibitor	Target	Indications	Phase	Goals/results	Ref
Siltuximab (CNTO-328)	IL6	Ovarian, pancreatic, colorectal, head and neck, and lung cancer, Castleman's disease, MM ^c	Phase I, Phase II	FDA-approved for Multicentric Castleman's disease (MCD), a lymphoproliferative disorder with germinal center hyperplasia	[259]
Tocilizumab	IL6R	KSHV-associated multi-centric Castleman's disease, MM (combined with allo-SCT), recurrent ovarian cancer (with chemo)	Phase 0, Phase I, Phase II	As both an anti-myeloma therapy and as a method to reduce GvHD, as chemo-sensitizer in recurrent ovarian cancer	[260, 261]
Ruxolitinib (INCB018424)	JAK1/2, STAT3	Chronic myeloproliferative disorders, leukemia, myelodysplastic syndrome, myeloproliferative neoplasms, unspecified childhood solid tumor, metastatic HER2+ BC, TNIBC (with pre-op chemo), HER2- BC (+ capecitabine)	Phase I, Phase II, Phase III	Encouraging results in myelofbrosis, decreasing not only disease symptoms but also JAK2 c.1849G>T (p.V617F) mutation burden. Toxicity remains an issue	[305]
AZD1480	JAK, STAT3	Metastatic cancer, pancreatic cancer, myeloproliferative diseases	Phase I	Pharmacodynamic analysis of circulating granulocytes demonstrated maximum phosphorylated STAT3 (pSTAT3) inhibition. Trial had to be eliminated because of toxicity	[41]
OPB-31121	JAK, STAT3	Advanced solid tumor, Hodgkin's lymphoma, non-Hodgkin's lymphoma, HCC	Phase I	Insufficient antitumor activity for HCC	[273]
Fedratinib (SAR302503)	JAK, STAT3	Advanced cancer, myelofibrosis	Phase I	Fedratinib treatment led to reduced STAT3 phosphorylation but no meaningful change in JAK2V617F allele burden in MF	[280, 282]
BSE-SFN	JAK2, STAT3	Atypical nevi	Phase 0	Evaluation of sulforaphane from Broccoli Sprout Extract (BSE-SFN) as a candidate natural chemopreventive agent able to modulate key steps in melanoma progression and STAT3 mediated gene transcription	[307, 308]
Pacritinib (SB1518)	JAK2, FLT3, STAT3/5	Myelofibrosis, AML (combined with decitabine/cytarabine)	Phase II	Active drug in myelofibrosis. Going in the AML patients for safety and efficacy as a STAT3 inhibitor in combination with decitabine/cytarabine	[284, 285]

tria
f clinical
stages o
various
ors at
inhibito
STAT3
Table 5.5

990	JAK2, gp130, STAT3	Advanced solid tumor, melanoma and recurrent glioblastoma	Phase I	Find the highest tolerable dose of WP1066 that can be given to patients with recurrent cancerous brain tumors or melanoma that has spread to the brain	[453, 454]
	JAK2, gp130, STAT3	Advanced solid tumor, glioblastoma multiforme, melanoma, relapsed/refractory hematological malignancies	Phase I	Recommended dose 4 mg, rapidly absorbed, accumulated with 4 weeks of treatments. No clear therapeutic response was observed in patients with relapsed/refractory hematological malignancies. Those with relapsed/refractory solid tumors, showed low pSTAT3 in PBMC	[291, 455]
~	STAT3 DBD	HNSCC	Phase 0	Expression levels of STAT3 target genes were decreased in head and neck cancer patients following intra-tumoral injection	[292]
Rx	STAT3	Advanced metastatic HCC, Advanced cancer, malignant lymphoma, people with malignant ascites, adult subjects with diffuse large B-cell lymphoma, relapsed metastatic HNSCC (with MEDI4736)	Phase I/ Phase Ib	AZD9150 (ISIS-STAT3Rx) showed single- agent antitumor activity in patients with highly treatment-refractory lymphoma and NSCLC	[293]
ine	STAT3	Relapsed chronic lymphocytic leukemia, small lymphocytic lymphoma	Phase I, Phase II	Phase I: to determine the maximum tolerated dose and recommended Phase II dose of pyrimethamine in relapsed CLL/SLL	[283]
	HMG- CoA, JAK2, STAT3, AKT, ERK	Refractory and/or relapsed solid or CNS tumors of childhood	Phase I	Define toxicity and evaluate cholesterol levels and IL-6/STAT3 pathway changes as biomarkers of patient response	[294– 296]

C indicates completed, MM Multiple Myeloma, HNSCC head and neck cell squamous cell carcinoma, BC breast cancer, GvHD Graft vs Host disease, BSE-SFN at Tyr-705, DM dimerization, NT nuclear translocation, DB DNA-binding, GT gene transcription

Brocholi Sprout Extract-sulforaphane

5 STAT3 Inhibitors in Cancer: A Comprehensive Update

studies undertaken in various cancers with this agent, six have been completed, five are still ongoing, and five have been either terminated or withdrawn because of lack of efficacy. IL-6 signaling inhibition using the IL-6R monoclonal antibody, tocilizumab, has shown promising results in rheumatoid arthritis and related diseases in approximately 230 trials [304] and is being evaluated in patients with cancers, including multiple myeloma, both as an anti-myeloma therapy and as a method to reduce GvHD after allogeneic stem cell transplant (SCT), as well as in recurrent ovarian cancer as adjuvant with carboplatin/doxorubicin [260, 261]. Preliminary analysis of the ongoing trial shows that immune reconstitution was preserved in recipients of tocilizumab and there was a reduced incidence of grade 2–4 acute GvHD [261]. A completed phase I trial combining carboplatin/doxorubicin with tocilizumab and IFN α 2b in patients with recurrent epithelial ovarian cancer (EOC) revealed that functional IL-6R blockade is feasible and safe in EOC patients treated with carboplatin/doxorubicin, using 8 mg/kg tocilizumab [260], and the combination was recommended for phase II evaluation based on immune parameters.

Approximately 50 trials with the JAK inhibitor, ruxolitinib, in many different cancer indications are underway and a few completed ones show some encouraging results in myelofibrosis [305], but toxicity remains an issue. In phase III clinical studies, ruxolitinib provided rapid and durable improvement of myelofibrosis-related splenomegaly and symptoms irrespective of mutation status, and was associated with a survival advantage compared with placebo or best available therapy. But because of dose-dependent cytopenias, blood count monitoring and dose titrations were recommended [266]. The JAK2 mutation (c.1849G>T; p.V617F) causes constitutive activation of Janus kinase (JAK)2 and dysregulated JAK signaling in myelofibrosis (MF), polycythemia vera (PV), and essential thrombocythemia (ET). Interestingly, in the phase III Controlled Myelofibrosis Study, patients with MF not only achieved significant reductions in splenomegaly and improvements in symptoms with ruxolitinib vs. placebo but 26/236 patients carrying the allele, also had their mutation burden lowered [306]; 20 achieved partial and 6 achieved complete molecular responses, with median times to response of 22.2 and 27.5 months [306]. The phase I study [41] with AZD1480, a JAK inhibitor, in 38 patients with advanced solid tumors, revealed rapid absorption and elimination with minimal accumulation after repeated daily or twice daily dosing. Pharmacodynamic analysis of circulating granulocytes demonstrated maximal reduction of pY-STAT3 within 1-2 h after dose, coincident with C_{max}, and greater reduction at higher doses. The average reduction in pY-STAT3 levels in granulocytes at the highest dose tested (70 mg daily), was 56 % at steady-state drug levels. Dose-limiting toxicities (DLTs) included pleiotropic neurologic adverse events (AEs), like dizziness, anxiety, ataxia, memory loss, hallucinations, and behavior changes. The trial had to be stopped because of toxicity.

Another JAK inhibitor that showed the best potency in pre-clinical studies, OPB-31121 [274–276], demonstrated insufficient antitumor activity in patients with hepatocellular carcinoma (HCC) in a clinical trial [273]. In an open-label, dose-escalation, and pharmacokinetic study of OPB-31121 in subjects with advanced solid tumor observed that twice-daily administration of OPB-31121 was feasible up to doses of 300 mg. The pharmacokinetic profile, however, was unfavorable and no objective responses were observed [273]. A similar study in advanced HCC also came up with the same result [273]. Furthermore, peripheral nervous system-related toxicities were experienced, which may limit long-term administration of OPB-31121 [273].

A very recent interventional study will evaluate the effect of sulforaphane from broccoli sprout extract (BSE-SFN) as a candidate natural chemopreventive agent which is known to modulate key steps in melanoma progression and STAT3 mediated gene transcription [307, 308] in melanocytic and stromal elements of 18 melanoma patients with at least two atypical nevi of \geq 4 mm diameter and those who have not received any form of systemic antineoplastic treatment for melanoma within the last year before recruitment, The primary outcomes that will be measured are (i) adverse events associated with oral sulforaphane, (ii) visual changes of atypical nevi size, border and color and (iii) the cellular changes.

Another new trial examines the safety and efficacy of the JAK2 inhibitor, pacritinib, for patients with AML in combination with either decitabine or cytarabine. Pacritinib has been shown to work through inhibition of STAT3 and STAT5 [284]. Pacritinib is an active agent in patients with myelofibrosis (MF), offering a potential treatment option for patients with preexisting anemia and thrombocytopenia. It demonstrated a favorable safety profile with promising efficacy in phase I studies in patients with primary and secondary MF. A subsequent multicenter phase II study demonstrated efficacy [285]. Out of 26 evaluable patients who either had clinical splenomegaly poorly controlled with standard therapies or were newly diagnosed with intermediate- or high-risk Lille score, 8 patients (31%) achieved a \geq 35% decrease in spleen volume (MRI) and 42% on the whole attained a \geq 50% reduction in spleen size by physical examination. Grade 1 or 2 diarrhea (69%) and nausea (49%) were the most common treatment-emergent adverse events. The study drug was discontinued in 9 patients (26%) due to adverse events (4 severe).

STAT3-decoy oligonucleotides (ODN) targeting the STAT3 DBD [292] and STAT3 siRNA based formulations [293] are the only direct STAT3 inhibitors that are in clinical trial for a cancer indication. Expression levels of STAT3 target genes were decreased in head and neck cancer patients following intratumoral injection with the STAT3 decoy compared with tumors receiving saline control in a phase 0 trial [292]. While intratumoral administration clearly shows target inhibition, it should be noted that there is no clear evidence that the same level of efficacy would be attained if the ODN were systemically administered. Therefore, it would be interesting to assess the effectiveness of this and the subsequent cyclic ODNs, on tumor STAT3 activity when delivered systemically in patients. Considering that effective and safe systemic intracellular delivery remains a challenge in this field it appears that there still remain some obstacles that have to be overcome before ODNs realize their full clinical potential as STAT3-targeting therapeutic agents.

STAT3 antisense based AZD9150 (ISIS-STAT3Rx) showed single-agent antitumor activity in patients with highly treatment-refractory lymphoma and NSCLC in a phase 1 dose escalation study. Of the 25 patients enrolled (12 advanced lymphoma; 7 with DLBCL, 2 Hodgkin's lymphoma, 2 follicular non-Hodgkin's lymphoma, 1 mantle cell lymphoma), 44% (11/25) achieved stable disease (SD) or a

partial response (PR); three of six patients (50%) with treatment-refractory DLBCL had evidence of tumor shrinkage and two patients (33%) achieved a confirmed durable PR [293]. The only NSCLC patient evaluated showed evidence of nearcomplete resolution of highly treatment refractory NSCLC liver metastasis upon first restaging, with additional stabilization of mediastinal lymph nodes in response to AZD9150 treatment (3 mg/kg) [293]. The maximum tolerated dose (MTD) of AZD9150 was determined to be 3 mg/kg. A rapidly evolving thrombocytopenia (in the first month of dosing) was observed in two of nine patients at 4 mg/kg and was considered the dose-limiting toxicity (DLT). A more chronic slowly progressing thrombocytopenia also occurred after 4-6 months of dosing at 2 and 3 mg/kg (and for most patients at 4 mg/kg) and was effectively managed with pauses and dose frequency adjustments. The slowly progressing thrombocytopenia seen in patients at or below the MTD is consistent with the reported role of STAT3 in megakaryopoiesis [309, 310], whereas the rapidly progressing thrombocytopenia seen above the MTD was of uncertain etiology. Other drug-related adverse events included aspartate aminotransferase (AST) elevation (44%), alanine aminotransferase (ALT) elevation (44%). Responses have also been seen in the DLBCL study. Dose escalation continues in the HCC study and knockdown of STAT3 in peripheral blood mononuclear cells (PBMCs) has been shown. IONIS-STAT3Rx, a variant of AZD9150 is also being examined for safety in patients with advanced cancers.

Tumor-induced STAT3 generates an immunosuppressive microenvironment and, therefore, has become a promising target for cancer therapy. Based on this premise, an ongoing clinical trial is investigating the effects of the antiparasitic drug, pyrimethamine, an inhibitor of STAT3 [283], in chronic lymphocytic leukemia (CLL) patients. Interestingly, pyrimethamine does not affect STAT3 phosphorylation [283] but does affect transcription of STAT3 gene targets.

Another re-purposed STAT3-inhibitor, simvastatin, an inhibitor of 3-hydroxy-3methylglutaryl-coenzyme A (HMG-CoA) [294–296] is being tested in a phase I trial in combination with topotecan and cyclophosphamide for refractory and/or relapsed solid or CNS tumors of childhood. HMG-CoA reductase inhibitors, or "statins", lower LDL (low density lipoprotein) cholesterol by inhibiting cholesterol biosynthesis. Statins also have been found to decrease the incidence of cancer [311, 312]. Statins have been shown to inhibit IL-6 mediated STAT3 activation and prevent recruitment of pro-inflammatory cells to injured heart tissue [313].

In conclusion, most of the inhibitors in trial, which target STAT3 in various cancer indications, belong to the upstream and repurposed inhibitors groups. None of the direct small-molecule STAT3 inhibitors under development has entered clinical trials. Since the pharmacokinetic properties of many of these are not well elaborated, it is difficult to comment on their preparedness to go to the clinics. The most promising in this regard is C188-9. Pharmacokinetic (PK) and toxicity studies in mice, rats, and dogs demonstrated that C188-9 provides excellent plasma exposures following oral administration and revealed no toxicity detectable by gross, microscopic or clinical laboratory evaluations when administered up to a dose of 100 mg/kg/day for 28 days in dogs, and up to a dose of 200 mg/kg/day for 28 days in rats [96]. Tumor PK studies of C188-9 in mice at 10 mg/kg demonstrated tumor levels twice those of plasma levels and nearly 3 times the IC_{50} for pSTAT3 inhibition [96]. C188-9 inhibits growth and survival of many types of cancer cells *in vitro*, including AML [95, 97], NSCLC [99], breast cancer (Dobrolecki et al. 2016, manuscript in preparation), and HNSCC [96] and inhibits the growth of NSCLC and HNSCC xenografts *in vivo* [96, 99].

5.5 Conclusion

Due to the essential contributions of STAT3 to virtually all the hallmarks of cancer, numerous approaches have been applied to identify molecules that effectively block STAT3 signaling to treat and/or prevent cancer, including peptidomimicry, de novo rational design, screening chemical libraries in silico and in vitro, and FBDD. Despite these efforts, few specific and selective STAT3 inhibitors with optimal anti-STAT3 activity have garnered the requisite pharmacokinetic and pharmacodynamic credentials to proceed to clinical trials. Some authors have stated that, unlike small enzymatic clefts, the STAT3:STAT3 dimer represents a protein-protein interaction that involves too large a surface area [86] to be effectively targeted by small, drug-like molecules [314]. These interaction surfaces and others involved in STAT3 proteinprotein and protein-DNA interaction also are shallow and relatively featureless, as opposed to the well-defined binding pockets seen in enzyme active sites, thereby making the designing difficult [315]. In addition, the binding regions of STAT3 protein-protein or DNA-protein interactions are often non-contiguous, making mimicry of these domains difficult to accomplish for simple peptides or peptidomimetics [314]. Yet, several small-molecule STAT3 inhibitors are under development, which have good binding affinity for STAT3, potent STAT3 inhibitory activities, and a good safety profile. If these compounds fail to progress into drugs, efforts need to continue in this area of drug development as the impact of having an effective STAT3 inhibitor available in the clinic to treat and/or prevent many cancers will be substantial. Future strategies directed toward the identification of new smallmolecule STAT3 probes should combine conventional screening-based strategies with FBDD and structural analytical tools, such as NMR analysis.

References

- 1. Darnell JEJ (2002) Transcription factors as targets for cancer therapy. Nat Rev Cancer 2(10):740–749
- Banerjee K, Resat H (2015) Constitutive activation of STAT3 in breast cancer cells: a review. Int J Cancer 138(11):2570–2578
- Vogt M, Domoszlai T, Kleshchanok D et al (2011) The role of the N-terminal domain in dimerization and nucleocytoplasmic shuttling of latent STAT3. J Cell Sci 124(Pt 6):900–909
- Sriuranpong V, Park JI, Amornphimoltham P et al (2003) Epidermal growth factor receptorindependent constitutive activation of STAT3 in head and neck squamous cell carcinoma is

mediated by the autocrine/paracrine stimulation of the interleukin 6/gp130 cytokine system. Cancer Res 63(11):2948-2956

- 5. Ulaganathan VK, Sperl B, Rapp UR et al (2015) Germline variant FGFR4 p.G388R exposes a membrane-proximal STAT3 binding site. Nature 528(7583):570–574
- Banerjee K, Resat H (2015) Constitutive activation of STAT3 in breast cancer cells: a review. Int J Cancer 138(11):2570–2578
- 7. Yuan J, Zhang F, Niu R (2015) Multiple regulation pathways and pivotal biological functions of STAT3 in cancer. Sci Rep 5:17663
- 8. Bromberg JF, Wrzeszczynska MH, Devgan G et al (1999) Stat3 as an oncogene. Cell 98(3):295–303
- 9. Gritsko T, Williams A, Turkson J et al (2006) Persistent activation of stat3 signaling induces survivin gene expression and confers resistance to apoptosis in human breast cancer cells. Clin Cancer Res 12(1):11–19
- Doucette TA, Kong L-Y, Yang Y et al (2012) Signal transducer and activator of transcription 3 promotes angiogenesis and drives malignant progression in glioma. Neuro Oncol 14(9):1136–1145
- Xiong H, Hong J, Du W et al (2012) Roles of STAT3 and ZEB1 proteins in E-cadherin downregulation and human colorectal cancer epithelial-mesenchymal transition. J Biol Chem 287(8):5819–5832
- Sherry MM, Reeves A, Wu JK et al (2009) STAT3 is required for proliferation and maintenance of multipotency in glioblastoma stem cells. Stem Cells 27(10):2383–2392
- Yu H, Kortylewski M, Pardoll D (2007) Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol 7(1):41–51
- Kortylewski M, Kujawski M, Wang T et al (2005) Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat Med 11(12):1314–1321
- Nabarro S, Himoudi N, Papanastasiou A et al (2005) Coordinated oncogenic transformation and inhibition of host immune responses by the PAX3-FKHR fusion oncoprotein. J Exp Med 202(10):1399–1410
- Marzec M, Zhang Q, Goradia A et al (2008) Oncogenic kinase NPM/ALK induces through STAT3 expression of immunosuppressive protein CD274 (PD-L1, B7-H1). Proc Natl Acad Sci U S A 105(52):20852–20857
- 17. Lee H-J, Zhuang G, Cao Y et al (2014) Drug resistance via feedback activation of Stat3 in oncogene-addicted cancer cells. Cancer Cell 26(2):207–221
- Szakacs G, Paterson JK, Ludwig JA et al (2006) Targeting multidrug resistance in cancer. Nat Rev Drug Discov 5(3):219–234
- 19. Real PJ, Sierra A, De Juan A et al (2002) Resistance to chemotherapy via Stat3-dependent overexpression of Bcl-2 in metastatic breast cancer cells. Oncogene 21(50):7611–7618
- Huang S, Chen M, Shen Y et al (2012) Inhibition of activated Stat3 reverses drug resistance to chemotherapeutic agents in gastric cancer cells. Cancer Lett 315(2):198–205
- Zhao C, Li H, Lin H-J et al (2016) Feedback activation of STAT3 as a cancer drug-resistance mechanism. Trends Pharmacol Sci 37(1):47–61
- Darnell JEJ, Kerr IM, Stark GR (1994) Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264(5164): 1415–1421
- Zhong Z, Wen Z, Darnell JEJ (1994) Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science 264(5155):95–98
- 24. Ram PT, Iyengar R (2001) G protein coupled receptor signaling through the Src and Stat3 pathway: role in proliferation and transformation. Oncogene 20(13):1601–1606
- 25. Shao H, Xu X, Mastrangelo MA, Jing N, Cook RG, Legge GB, Tweardy DJ (2004) Structural requirements for signal transducer and activator of transcription 3 binding to phosphotyrosine ligands containing the YXXQ motif. J Biol Chem 30;279(18):18967–73
- 26. Liu L, McBride KM, Reich NC (2005) STAT3 nuclear import is independent of tyrosine phosphorylation and mediated by importin-alpha3. Proc Natl Acad Sci U S A 102(23): 8150–8155

5 STAT3 Inhibitors in Cancer: A Comprehensive Update

- 27. Cimica V, Chen H-C, Iyer JK et al (2011) Dynamics of the STAT3 transcription factor: nuclear import dependent on Ran and importin-beta1. PLoS One 6(5):e20188
- 28. Reich NC (2013) STATs get their move on. JAKSTAT 2(4):e27080
- 29. Ma J, Zhang T, Novotny-Diermayr V et al (2003) A novel sequence in the coiled-coil domain of Stat3 essential for its nuclear translocation. J Biol Chem 278(31):29252–29260
- Pranada AL, Metz S, Herrmann A et al (2004) Real time analysis of STAT3 nucleocytoplasmic shuttling. J Biol Chem 279(15):15114–15123
- Paulson M, Pisharody S, Pan L et al (1999) Stat protein transactivation domains recruit p300/ CBP through widely divergent sequences. J Biol Chem 274(36):25343–25349
- Giraud S, Bienvenu F, Avril S et al (2002) Functional interaction of STAT3 transcription factor with the coactivator NcoA/SRC1a. J Biol Chem 277(10):8004–8011
- Quesnelle KM, Boehm AL, Grandis JR (2007) STAT-mediated EGFR signaling in cancer. J Cell Biochem 102(2):311–319
- Silva CM (2004) Role of STATs as downstream signal transducers in Src family kinasemediated tumorigenesis. Oncogene 23(48):8017–8023
- 35. Garcia R, Bowman TL, Niu G et al (2001) Constitutive activation of Stat3 by the Src and JAK tyrosine kinases participates in growth regulation of human breast carcinoma cells. Oncogene 20(20):2499–2513
- Buchert M, Burns CJ, Ernst M (2015) Targeting JAK kinase in solid tumors: emerging opportunities and challenges. Oncogene 35(8):939–951
- Guo Y, Xu F, Lu T et al (2012) Interleukin-6 signaling pathway in targeted therapy for cancer. Cancer Treat Rev 38(7):904–910
- Buerger C, Nagel-Wolfrum K, Kunz C et al (2003) Sequence-specific peptide aptamers, interacting with the intracellular domain of the epidermal growth factor receptor, interfere with Stat3 activation and inhibit the growth of tumor cells. J Biol Chem 278(39): 37610–37621
- Balabanov S, Braig M, Brummendorf TH (2014) Current aspects in resistance against tyrosine kinase inhibitors in chronic myelogenous leukemia. Drug Discov Today Technol 11:89–99
- Norman P (2014) Selective JAK inhibitors in development for rheumatoid arthritis. Expert Opin Investig Drugs 23(8):1067–1077
- Plimack ER, Lorusso PM, McCoon P et al (2013) AZD1480: a phase I study of a novel JAK2 inhibitor in solid tumors. Oncologist 18(7):819–820
- 42. Vultur A, Villanueva J, Krepler C et al (2014) MEK inhibition affects STAT3 signaling and invasion in human melanoma cell lines. Oncogene 33(14):1850–1861
- Becker S, Groner B, Muller CW (1998) Three-dimensional structure of the Stat3beta homodimer bound to DNA. Nature 394(6689):145–151
- 44. Ren Z, Cabell LA, Schaefer TS et al (2003) Identification of a high-affinity phosphopeptide inhibitor of Stat3. Bioorg Med Chem Lett 13(4):633–636
- Turkson J, Ryan D, Kim JS et al (2001) Phosphotyrosyl peptides block Stat3-mediated DNA binding activity, gene regulation, and cell transformation. J Biol Chem 276(48):45443– 45455
- 46. Wiederkehr-Adam M, Ernst P, Muller K et al (2003) Characterization of phosphopeptide motifs specific for the Src homology 2 domains of signal transducer and activator of transcription 1 (STAT1) and STAT3. J Biol Chem 278(18):16117–16128
- Yue P, Turkson J (2009) Targeting STAT3 in cancer: how successful are we? Expert Opin Investig Drugs 18(1):45–56
- 48. Vultur A, Cao J, Arulanandam R et al (2004) Cell-to-cell adhesion modulates Stat3 activity in normal and breast carcinoma cells. Oncogene 23(15):2600–2616
- 49. Turkson J, Kim JS, Zhang S et al (2004) Novel peptidomimetic inhibitors of signal transducer and activator of transcription 3 dimerization and biological activity. Mol Cancer Ther 3(3):261–269
- 50. Siddiquee KA, Gunning PT, Glenn M et al (2007) An oxazole-based small-molecule Stat3 inhibitor modulates Stat3 stability and processing and induces antitumor cell effects. ACS Chem Biol 2(12):787–798

- 51. Shao H, Xu X, Jing N et al (2006) Unique structural determinants for Stat3 recruitment and activation by the granulocyte colony-stimulating factor receptor at phosphotyrosine ligands 704 and 744. J Immunol 176(5):2933–2941
- 52. Coleman DR, Ren Z, Mandal PK et al (2005) Investigation of the binding determinants of phosphopeptides targeted to the SRC homology 2 domain of the signal transducer and activator of transcription 3. Development of a high-affinity peptide inhibitor. J Med Chem 48(21):6661–6670
- 53. Auzenne EJ, Klostergaard J, Mandal PK et al (2012) A phosphopeptide mimetic prodrug targeting the SH2 domain of Stat3 inhibits tumor growth and angiogenesis. J Exp Ther Oncol 10(2):155–162
- 54. Mandal PK, Gao F, Lu Z et al (2011) Potent and selective phosphopeptide mimetic prodrugs targeted to the Src homology 2 (SH2) domain of signal transducer and activator of transcription 3. J Med Chem 54(10):3549–3563
- 55. Kim D, Lee IH, Kim S et al (2014) A specific STAT3-binding peptide exerts antiproliferative effects and antitumor activity by inhibiting STAT3 phosphorylation and signaling. Cancer Res 74(8):2144–2151
- 56. Borghouts C, Delis N, Brill B et al (2012) A membrane penetrating peptide aptamer inhibits STAT3 function and suppresses the growth of STAT3 addicted tumor cells. JAKSTAT 1(1):44–54
- 57. Mack L, Brill B, Delis N et al (2012) Stat3 is activated in skin lesions by the local application of imiquimod, a ligand of TLR7, and inhibited by the recombinant peptide aptamer rS3-PA. Horm Mol Biol Clin Investig 10(2):265–272
- 58. Schoneberger H, Weiss A, Brill B et al (2011) The integration of a Stat3 specific peptide aptamer into the thioredoxin scaffold protein strongly enhances its inhibitory potency. Horm Mol Biol Clin Investig 5(1):1–9
- 59. Weber A, Borghouts C, Delis N et al (2012) Inhibition of Stat3 by peptide aptamer rS3-PA enhances growth suppressive effects of irinotecan on colorectal cancer cells. Horm Mol Biol Clin Investig 10(2):273–279
- 60. Drewry JA, Fletcher S, Yue P et al (2010) Coordination complex SH2 domain proteomimetics: an alternative approach to disrupting oncogenic protein-protein interactions. Chem Commun (Camb) 46(6):892–894
- Bhasin D, Cisek K, Pandharkar T et al (2008) Design, synthesis, and studies of small molecule STAT3 inhibitors. Bioorg Med Chem Lett 18(1):391–395
- 62. Chen CL, Loy A, Cen L et al (2007) Signal transducer and activator of transcription 3 is involved in cell growth and survival of human rhabdomyosarcoma and osteosarcoma cells. BMC Cancer 7:111
- 63. Song H, Wang R, Wang S et al (2005) A low-molecular-weight compound discovered through virtual database screening inhibits Stat3 function in breast cancer cells. Proc Natl Acad Sci U S A 102(13):4700–4705
- 64. Fuh B, Sobo M, Cen L et al (2009) LLL-3 inhibits STAT3 activity, suppresses glioblastoma cell growth and prolongs survival in a mouse glioblastoma model. Br J Cancer 100(1):106–112
- 65. Ball S, Li C, Li PK et al (2011) The small molecule, LLL12, inhibits STAT3 phosphorylation and induces apoptosis in medulloblastoma and glioblastoma cells. PLoS One 6(4):e18820
- 66. Bid HK, Oswald D, Li C et al (2012) Anti-angiogenic activity of a small molecule STAT3 inhibitor LLL12. PLoS One 7(4):e35513
- 67. Couto JI, Bear MD, Lin J et al (2012) Biologic activity of the novel small molecule STAT3 inhibitor LLL12 against canine osteosarcoma cell lines. BMC Vet Res 8:244
- 68. Jain R, Kulkarni P, Dhali S et al (2014) Quantitative proteomic analysis of global effect of LLL12 on U87 cell's proteome: an insight into the molecular mechanism of LLL12. J Proteomics 113:127–142

- 69. Lin L, Benson DM Jr, DeAngelis S et al (2012) A small molecule, LLL12 inhibits constitutive STAT3 and IL-6-induced STAT3 signaling and exhibits potent growth suppressive activity in human multiple myeloma cells. Int J Cancer 130(6):1459–1469
- Lin L, Hutzen B, Li PK et al (2010) A novel small molecule, LLL12, inhibits STAT3 phosphorylation and activities and exhibits potent growth-suppressive activity in human cancer cells. Neoplasia 12(1):39–50
- Liu A, Liu Y, Li PK et al (2011) LLL12 inhibits endogenous and exogenous interleukin-6induced STAT3 phosphorylation in human pancreatic cancer cells. Anticancer Res 31(6):2029–2035
- 72. Onimoe GI, Liu A, Lin L et al (2012) Small molecules, LLL12 and FLLL32, inhibit STAT3 and exhibit potent growth suppressive activity in osteosarcoma cells and tumor growth in mice. Invest New Drugs 30(3):916–926
- 73. Wei CC, Ball S, Lin L et al (2011) Two small molecule compounds, LLL12 and FLLL32, exhibit potent inhibitory activity on STAT3 in human rhabdomyosarcoma cells. Int J Oncol 38(1):279–285
- 74. Schust J, Sperl B, Hollis A et al (2006) Stattic: a small-molecule inhibitor of STAT3 activation and dimerization. Chem Biol 13(11):1235–1242
- 75. Heidelberger S, Zinzalla G, Antonow D et al (2013) Investigation of the protein alkylation sites of the STAT3:STAT3 inhibitor Stattic by mass spectrometry. Bioorg Med Chem Lett 23(16):4719–4722
- 76. Pan Y, Zhou F, Zhang R et al (2013) Stat3 inhibitor Stattic exhibits potent antitumor activity and induces chemo- and radio-sensitivity in nasopharyngeal carcinoma. PLoS One 8(1):e54565
- 77. Zhang Q, Zhang C, He J et al (2015) STAT3 inhibitor stattic enhances radiosensitivity in esophageal squamous cell carcinoma. Tumour Biol 36(3):2135–2142
- Ji T, Gong D, Han Z et al (2013) Abrogation of constitutive Stat3 activity circumvents cisplatin resistant ovarian cancer. Cancer Lett 341(2):231–239
- 79. Buettner R, Corzano R, Rashid R et al (2011) Alkylation of cysteine 468 in Stat3 defines a novel site for therapeutic development. ACS Chem Biol 6(5):432–443
- Sanseverino I, Purificato C, Gauzzi MC et al (2012) Revisiting the specificity of small molecule inhibitors: the example of stattic in dendritic cells. Chem Biol 19(10): 1213–1214
- Gurbuz V, Konac E, Varol N et al (2014) Effects of AG490 and S3I-201 on regulation of the JAK/STAT3 signaling pathway in relation to angiogenesis in TRAIL-resistant prostate cancer cells. Oncol Lett 7(3):755–763
- Siddiquee K, Zhang S, Guida WC et al (2007) Selective chemical probe inhibitor of Stat3, identified through structure-based virtual screening, induces antitumor activity. Proc Natl Acad Sci U S A 104(18):7391–7396
- Fletcher S, Page BD, Zhang X et al (2011) Antagonism of the Stat3-Stat3 protein dimer with salicylic acid based small molecules. Chem Med Chem 6(8):1459–1470
- 84. Zhang X, Yue P, Fletcher S et al (2010) A novel small-molecule disrupts Stat3 SH2 domainphosphotyrosine interactions and Stat3-dependent tumor processes. Biochem Pharmacol 79(10):1398–1409
- Fletcher S, Singh J, Zhang X et al (2009) Disruption of transcriptionally active Stat3 dimers with non-phosphorylated, salicylic acid-based small molecules: potent in vitro and tumor cell activities. Chembiochem 10(12):1959–1964
- Furtek SL, Backos DS, Matheson CJ, Reigan P (2016) Strategies and approaches of targeting STAT3 for cancer treatment. ACS Chem Biol. 9;11(2):308–318
- Page BD, Fletcher S, Yue P et al (2011) Identification of a non-phosphorylated, cell permeable, small molecule ligand for the Stat3 SH2 domain. Bioorg Med Chem Lett 21(18):5605–5609
- Zhang X, Yue P, Page BD et al (2012) Orally bioavailable small-molecule inhibitor of transcription factor Stat3 regresses human breast and lung cancer xenografts. Proc Natl Acad Sci U S A 109(24):9623–9628

- Shahani VM, Yue P, Haftchenary S et al (2011) Identification of purine-scaffold smallmolecule inhibitors of Stat3 activation by QSAR studies. ACS Med Chem Lett 2(1):79–84
- 90. Fletcher S, Turkson J, Gunning PT (2008) Molecular approaches towards the inhibition of the signal transducer and activator of transcription 3 (Stat3) protein. ChemMedChem 3(8):1159–1168
- Haftchenary S, Luchman HA, Jouk AO et al (2013) Potent targeting of the STAT3 protein in brain cancer stem cells: a promising route for treating glioblastoma. ACS Med Chem Lett 4(11):1102–1107
- 92. Yue P, Lopez-Tapia F, Paladino D et al (2016) Hydroxamic acid and benzoic acid-based STAT3 inhibitors suppress human glioma and breast cancer phenotypes in vitro and in vivo. Cancer Res 76(3):652–663
- 93. Xu X, Kasembeli MM, Jiang X et al (2009) Chemical probes that competitively and selectively inhibit Stat3 activation. PLoS One 4(3):e4783
- 94. Dave B, Landis MD, Tweardy DJ et al (2012) Selective small molecule Stat3 inhibitor reduces breast cancer tumor-initiating cells and improves recurrence free survival in a humanxenograft model. PLoS One 7(8):e30207
- 95. Redell MS, Ruiz MJ, Alonzo TA et al (2011) Stat3 signaling in acute myeloid leukemia: ligand-dependent and -independent activation and induction of apoptosis by a novel smallmolecule Stat3 inhibitor. Blood 117(21):5701–5709
- 96. Bharadwaj U, Eckols TK, Xu X, Kasembeli MM, Chen Y, Adachi M, Song Y, Mo Q, Lai SY, Tweardy DJ (2016) Small-molecule inhibition of STAT3 in radioresistant head and neck squamous cell carcinoma. Oncotarget 7(18):26307–26330
- Redell MS, Ruiz MJ, Gerbing RB et al (2013) FACS analysis of Stat3/5 signaling reveals sensitivity to G-CSF and IL-6 as a significant prognostic factor in pediatric AML: a Children's Oncology Group report. Blood 121(7):1083–1093
- Zhang L, Pan J, Dong Y et al (2013) Stat3 activation links a C/EBPdelta to myostatin pathway to stimulate loss of muscle mass. Cell Metab 18(3):368–379
- Lewis KM, Bharadwaj U, Eckols TK et al (2015) Small-molecule targeting of signal transducer and activator of transcription (STAT) 3 to treat non-small cell lung cancer. Lung Cancer 90(2):182–190
- 100. Shin DS, Kim HN, Shin KD et al (2009) Cryptotanshinone inhibits constitutive signal transducer and activator of transcription 3 function through blocking the dimerization in DU145 prostate cancer cells. Cancer Res 69(1):193–202
- 101. Ge Y, Yang B, Chen Z et al (2015) Cryptotanshinone suppresses the proliferation and induces the apoptosis of pancreatic cancer cells via the STAT3 signaling pathway. Mol Med Rep 12(5):7782–7788
- 102. Li W, Saud SM, Young MR et al (2015) Cryptotanshinone, a Stat3 inhibitor, suppresses colorectal cancer proliferation and growth in vitro. Mol Cell Biochem 406(1-2):63–73
- 103. Liu P, Xu S, Zhang M et al (2013) Anticancer activity in human multiple myeloma U266 cells: synergy between cryptotanshinone and arsenic trioxide. Metallomics 5(7):871–878
- 104. Lu L, Li C, Li D et al (2013) Cryptotanshinone inhibits human glioma cell proliferation by suppressing STAT3 signaling. Mol Cell Biochem 381(1–2):273–282
- 105. Yu HJ, Park C, Kim SJ et al (2014) Signal transducer and activators of transcription 3 regulates cryptotanshinone-induced apoptosis in human mucoepidermoid carcinoma cells. Pharmacogn Mag 10(Suppl 3):S622–S629
- 106. Ge Y, Yang B, Xu X et al (2015) Cryptotanshinone acts synergistically with imatinib to induce apoptosis of human chronic myeloid leukemia cells. Leuk Lymphoma 56(3): 730–738
- 107. Jung JH, Kwon TR, Jeong SJ et al (2013) Apoptosis induced by tanshinone IIA and cryptotanshinone is mediated by distinct JAK/STAT3/5 and SHP1/2 signaling in chronic myeloid leukemia K562 cells. Evid Based Complement Alternat Med 2013:805639
- 108. Xia C, Bai X, Hou X et al (2015) Cryptotanshinone reverses cisplatin resistance of human lung carcinoma A549 cells through down-regulating Nrf2 pathway. Cell Physiol Biochem 37(2):816–824
- 109. Zhu Z, Zhao Y, Li J, Tao L, Shi P, Wei Z, Sheng X, Shen D, Liu Z, Zhou L, Tian C, Fan F, Shen C, Zhu P, Wang A, Chen W, Zhao Q, Lu Y (2015) Cryptotanshinone, a novel tumor

angiogenesis inhibitor, destabilizes tumor necrosis factor-α mRNA via decreasing nuclearcytoplasmic translocation of RNA-binding protein HuR. Mol Carcinog 55(10):1399–1401

- Matsuno K, Masuda Y, Uehara Y et al (2010) Identification of a new series of STAT3 inhibitors by virtual screening. ACS Med Chem Lett 1(8):371–375
- 111. Ashizawa T, Akiyama Y, Miyata H et al (2014) Effect of the STAT3 inhibitor STX-0119 on the proliferation of a temozolomide-resistant glioblastoma cell line. Int J Oncol 45(1):411–418
- 112. Ashizawa T, Miyata H, Iizuka A et al (2013) Effect of the STAT3 inhibitor STX-0119 on the proliferation of cancer stem-like cells derived from recurrent glioblastoma. Int J Oncol 43(1):219–227
- 113. Ashizawa T, Miyata H, Ishii H et al (2011) Antitumor activity of a novel small molecule STAT3 inhibitor against a human lymphoma cell line with high STAT3 activation. Int J Oncol 38(5):1245–1252
- 114. Lin J, Buettner R, Yuan YC et al (2009) Molecular dynamics simulations of the conformational changes in signal transducers and activators of transcription, Stat1 and Stat3. J Mol Graph Model 28(4):347–356
- 115. Bharadwaj U, Eckols TK, Kolosov M et al (2014) Drug-repositioning screening identified piperlongumine as a direct STAT3 inhibitor with potent activity against breast cancer. Oncogene 34(11):1341–1353
- 116. Fukunishi Y (2010) Post processing of protein-compound docking for fragment-based drug discovery (FBDD): in-silico structure-based drug screening and ligand-binding pose prediction. Curr Top Med Chem 10(6):680–694
- 117. Murray CW, Rees DC (2016) Opportunity knocks: organic chemistry for fragment-based drug discovery (FBDD). Angew Chem Int Ed Engl 55(2):488–492
- 118. Whittaker M (2009) Picking up the pieces with FBDD or FADD: invest early for future success. Drug Discov Today 14(13–14):623–624
- 119. Liu A, Liu Y, Jin Z et al (2012) XZH-5 inhibits STAT3 phosphorylation and enhances the cytotoxicity of chemotherapeutic drugs in human breast and pancreatic cancer cells. PLoS One 7(10):e46624
- 120. Liu A, Liu Y, Xu Z et al (2011) Novel small molecule, XZH-5, inhibits constitutive and interleukin-6-induced STAT3 phosphorylation in human rhabdomyosarcoma cells. Cancer Sci 102(7):1381–1387
- 121. Liu Y, Liu A, Xu Z et al (2011) XZH-5 inhibits STAT3 phosphorylation and causes apoptosis in human hepatocellular carcinoma cells. Apoptosis 16(5):502–510
- 122. Law V, Knox C, Djoumbou Y et al (2014) DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res 42(Database issue):D1091–D1097
- 123. Daka P, Liu A, Karunaratne C et al (2015) Design, synthesis and evaluation of XZH-5 analogues as STAT3 inhibitors. Bioorg Med Chem 23(6):1348–1355
- 124. Ren X, Duan L, He Q et al (2010) Identification of niclosamide as a new small-molecule inhibitor of the STAT3 signaling pathway. ACS Med Chem Lett 1(9):454–459
- 125. Chen H, Yang Z, Ding C et al (2013) Fragment-based drug design and identification of HJC0123, a novel orally bioavailable STAT3 inhibitor for cancer therapy. Eur J Med Chem 62:498–507
- 126. Chen H, Yang Z, Ding C et al (2013) Discovery of -alkylamino tethered niclosamide derivatives as potent and orally bioavailable anticancer agents. ACS Med Chem Lett 4(2):180–185
- 127. Yu W, Xiao H, Lin J et al (2013) Discovery of novel STAT3 small molecule inhibitors via in silico site-directed fragment-based drug design. J Med Chem 56(11):4402–4412
- 128. Seidel HM, Milocco LH, Lamb P et al (1995) Spacing of palindromic half sites as a determinant of selective STAT (signal transducers and activators of transcription) DNA binding and transcriptional activity. Proc Natl Acad Sci U S A 92(7):3041–3045
- 129. Bielinska A, Shivdasani RA, Zhang LQ et al (1990) Regulation of gene expression with double-stranded phosphorothioate oligonucleotides. Science 250(4983):997–1000
- Mann MJ, Dzau VJ (2000) Therapeutic applications of transcription factor decoy oligonucleotides. J Clin Invest 106(9):1071–1075

- 131. Ahmad MZ, Akhter S, Mallik N et al (2013) Application of decoy oligonucleotides as novel therapeutic strategy: a contemporary overview. Current Drug Discov Tech 10(1):71–84
- 132. Yokozeki H, Wu MH, Sumi K et al (2004) In vivo transfection of a cis element 'decoy' against signal transducers and activators of transcription 6 (STAT6)-binding site ameliorates IgE-mediated late-phase reaction in an atopic dermatitis mouse model. Gene Ther 11(24):1753–1762
- 133. Leong PL, Andrews GA, Johnson DE et al (2003) Targeted inhibition of Stat3 with a decoy oligonucleotide abrogates head and neck cancer cell growth. Proc Natl Acad Sci U S A 100(7):4138–4143
- 134. Shen J, Li R, Li G (2009) Inhibitory effects of decoy-ODN targeting activated STAT3 on human glioma growth in vivo. In Vivo 23(2):237–243
- 135. Zhang X, Liu P, Zhang B et al (2013) Inhibitory effects of STAT3 decoy oligodeoxynucleotides on human epithelial ovarian cancer cell growth in vivo. Int J Mol Med 32(3):623–628
- 136. Liu M, Wang F, Wen Z et al (2014) Blockage of STAT3 signaling pathway with a decoy oligodeoxynucleotide inhibits growth of human ovarian cancer cells. Cancer Invest 32(1):8–12
- 137. Lewis HD, Winter A, Murphy TF et al (2008) STAT3 inhibition in prostate and pancreatic cancer lines by STAT3 binding sequence oligonucleotides: differential activity between 5' and 3' ends. Mol Cancer Ther 7(6):1543–1550
- 138. Sun X, Zhang J, Wang L et al (2008) Growth inhibition of human hepatocellular carcinoma cells by blocking STAT3 activation with decoy-ODN. Cancer Lett 262(2):201–213
- Sen M, Tosca PJ, Zwayer C et al (2009) Lack of toxicity of a STAT3 decoy oligonucleotide. Cancer Chemother Pharmacol 63(6):983–995
- 140. Sen M, Paul K, Freilino ML et al (2014) Systemic administration of a cyclic signal transducer and activator of transcription 3 (STAT3) decoy oligonucleotide inhibits tumor growth without inducing toxicological effects. Mol Med 20:46–56
- 141. Lewis HD, Husain A, Donnelly RJ et al (2010) Creation of a novel peptide with enhanced nuclear localization in prostate and pancreatic cancer cell lines. BMC Biotechnol 10:79
- 142. Williamson JR (1994) G-quartet structures in telomeric DNA. Annu Rev Biophys Biomol Struct 23:703–730
- 143. Sundquist WI, Klug A (1989) Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loops. Nature 342(6251):825–829
- 144. Jing N, Li Y, Xu X et al (2003) Targeting Stat3 with G-quartet oligodeoxynucleotides in human cancer cells. DNA Cell Biol 22(11):685–696
- 145. Jing N, Li Y, Xiong W et al (2004) G-quartet oligonucleotides: a new class of signal transducer and activator of transcription 3 inhibitors that suppresses growth of prostate and breast tumors through induction of apoptosis. Cancer Res 64(18):6603–6609
- 146. Tweardy DJ, Jing N (2006) Enhancing or eliminating signals for cell survival to treat disease. Trans Am Clin Climatol Assoc 117:33–51
- 147. Weerasinghe P, Garcia GE, Zhu Q et al (2007) Inhibition of Stat3 activation and tumor growth suppression of non-small cell lung cancer by G-quartet oligonucleotides. Int J Oncol 31(1):129–136
- 148. Zuckerman JE, Davis ME (2015) Clinical experiences with systemically administered siRNA-based therapeutics in cancer. Nat Rev Drug Discov 14(12):843–856
- 149. Turkson J, Zhang S, Palmer J et al (2004) Inhibition of constitutive signal transducer and activator of transcription 3 activation by novel platinum complexes with potent antitumor activity. Mol Cancer Ther 3(12):1533–1542
- 150. Turkson J, Zhang S, Mora LB et al (2005) A novel platinum compound inhibits constitutive Stat3 signaling and induces cell cycle arrest and apoptosis of malignant cells. J Biol Chem 280(38):32979–32988
- 151. Assi HH, Paran C, VanderVeen N et al (2014) Preclinical characterization of signal transducer and activator of transcription 3 small molecule inhibitors for primary and metastatic brain cancer therapy. J Pharmacol Exp Ther 349(3):458–469

- 152. Heudi O, Brisset H, Cailleux A et al (2001) Chemical instability and methods for measurement of cisplatin adducts formed by interactions with cysteine and glutathione. Int J Clin Pharmacol Ther 39(8):344–349
- 153. Singh J, Petter RC, Baillie TA et al (2011) The resurgence of covalent drugs. Nat Rev Drug Discov 10(4):307–317
- 154. Huang W, Dong Z, Wang F et al (2014) A small molecule compound targeting STAT3 DNAbinding domain inhibits cancer cell proliferation, migration, and invasion. ACS Chem Biol 9(5):1188–1196
- 155. Huang W, Dong Z, Chen Y et al (2015) Small-molecule inhibitors targeting the DNA-binding domain of STAT3 suppress tumor growth, metastasis and STAT3 target gene expression in vivo. Oncogene 35(6):783–792
- 156. Rath KS, Naidu SK, Lata P et al (2014) HO-3867, a safe STAT3 inhibitor, is selectively cytotoxic to ovarian cancer. Cancer Res 74(8):2316–2327
- 157. Tierney BJ, McCann GA, Naidu S et al (2014) Aberrantly activated pSTAT3-Ser727 in human endometrial cancer is suppressed by HO-3867, a novel STAT3 inhibitor. Gynecol Oncol 135(1):133–141
- 158. Selvendiran K, Tong L, Bratasz A et al (2010) Anticancer efficacy of a difluorodiarylidenyl piperidone (HO-3867) in human ovarian cancer cells and tumor xenografts. Mol Cancer Ther 9(5):1169–1179
- Weidler M, Rether J, Anke T et al (2000) Inhibition of interleukin-6 signaling by galiellalactone. FEBS Lett 484(1):1–6
- 160. Hellsten R, Johansson M, Dahlman A et al (2008) Galiellalactone is a novel therapeutic candidate against hormone-refractory prostate cancer expressing activated Stat3. Prostate 68(3):269–280
- 161. Canesin G, Evans-Axelsson S, Hellsten R et al (2015) The STAT3 inhibitor galiellalactone effectively reduces tumor growth and metastatic spread in an orthotopic xenograft mouse model of prostate cancer. Eur Urol 69(3):400–404
- 162. Don-Doncow N, Escobar Z, Johansson M et al (2014) Galiellalactone is a direct inhibitor of the transcription factor STAT3 in prostate cancer cells. J Biol Chem 289(23):15969–15978
- 163. Nagel-Wolfrum K, Buerger C, Wittig I et al (2004) The interaction of specific peptide aptamers with the DNA binding domain and the dimerization domain of the transcription factor Stat3 inhibits transactivation and induces apoptosis in tumor cells. Mol Cancer Res 2(3):170–182
- 164. Yang J, Chatterjee-Kishore M, Staugaitis SM et al (2005) Novel roles of unphosphorylated STAT3 in oncogenesis and transcriptional regulation. Cancer Res 65(3):939–947
- 165. Yang J, Liao X, Agarwal MK et al (2007) Unphosphorylated STAT3 accumulates in response to IL-6 and activates transcription by binding to NFkappaB. Genes Dev 21(11):1396–1408
- 166. Yang J, Stark GR (2008) Roles of unphosphorylated STATs in signaling. Cell Res 18(4):443-451
- 167. Shuai K (2000) Modulation of STAT signaling by STAT-interacting proteins. Oncogene 19(21):2638–2644
- 168. Furqan M, Akinleye A, Mukhi N et al (2013) STAT inhibitors for cancer therapy. J Hematol Oncol 6:90
- 169. Timofeeva OA, Gaponenko V, Lockett SJ et al (2007) Rationally designed inhibitors identify STAT3 N-domain as a promising anticancer drug target. ACS Chem Biol 2(12):799–809
- 170. Zhang X, Darnell JE Jr (2001) Functional importance of Stat3 tetramerization in activation of the alpha 2-macroglobulin gene. J Biol Chem 276(36):33576–33581
- 171. Zhang Y, Sif S, DeWille J (2007) The mouse C/EBPdelta gene promoter is regulated by STAT3 and Sp1 transcriptional activators, chromatin remodeling and c-Myc repression. J Cell Biochem 102(5):1256–1270
- 172. Ota N, Brett TJ, Murphy TL et al (2004) N-domain-dependent nonphosphorylated STAT4 dimers required for cytokine-driven activation. Nat Immunol 5(2):208–215
- 173. Tyler DR, Persky ME, Matthews LA et al (2007) Pre-assembly of STAT4 with the human IFN-alpha/beta receptor-2 subunit is mediated by the STAT4 N-domain. Mol Immunol 44(8):1864–1872

- 174. Zhang T, Kee WH, Seow KT et al (2000) The coiled-coil domain of Stat3 is essential for its SH2 domain-mediated receptor binding and subsequent activation induced by epidermal growth factor and interleukin-6. Mol Cell Biol 20(19):7132–7139
- 175. Timofeeva OA, Tarasova NI, Zhang X et al (2013) STAT3 suppresses transcription of proapoptotic genes in cancer cells with the involvement of its N-terminal domain. Proc Natl Acad Sci U S A 110(4):1267–1272
- 176. Zhao Y, Zeng C, Tarasova NI et al (2013) A new role for STAT3 as a regulator of chromatin topology. Transcription 4(5):227–231
- 177. Timofeeva OA, Chasovskikh S, Lonskaya I et al (2012) Mechanisms of unphosphorylated STAT3 transcription factor binding to DNA. J Biol Chem 287(17):14192–14200
- 178. Heinrich PC, Behrmann I, Haan S et al (2003) Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 374(Pt 1):1–20
- 179. Kubo M, Hanada T, Yoshimura A (2003) Suppressors of cytokine signaling and immunity. Nat Immunol 4(12):1169–1176
- 180. Gu F, Dube N, Kim JW et al (2003) Protein tyrosine phosphatase 1B attenuates growth hormone-mediated JAK2-STAT signaling. Mol Cell Biol 23(11):3753–3762
- 181. Kim HY, Park EJ, Joe EH et al (2003) Curcumin suppresses Janus kinase-STAT inflammatory signaling through activation of Src homology 2 domain-containing tyrosine phosphatase 2 in brain microglia. J Immunol 171(11):6072–6079
- 182. Tai WT, Cheng AL, Shiau CW et al (2011) Signal transducer and activator of transcription 3 is a major kinase-independent target of sorafenib in hepatocellular carcinoma. J Hepatol 55(5):1041–1048
- 183. Fan LC, Teng HW, Shiau CW et al (2015) Pharmacological targeting SHP-1-STAT3 signaling is a promising therapeutic approach for the treatment of colorectal cancer. Neoplasia 17(9):687–696
- 184. Han Y, Amin HM, Franko B et al (2006) Loss of SHP1 enhances JAK3/STAT3 signaling and decreases proteosome degradation of JAK3 and NPM-ALK in ALK+ anaplastic large-cell lymphoma. Blood 108(8):2796–2803
- 185. Witkiewicz A, Raghunath P, Wasik A et al (2007) Loss of SHP-1 tyrosine phosphatase expression correlates with the advanced stages of cutaneous T-cell lymphoma. Human Pathol 38(3):462–467
- 186. Chen KF, Chen HL, Shiau CW et al (2013) Sorafenib and its derivative SC-49 sensitize hepatocellular carcinoma cells to CS-1008, a humanized anti-TNFRSF10B (DR5) antibody. Br J Pharmacol 168(3):658–672
- 187. Liu CY, Tseng LM, Su JC et al (2013) Novel sorafenib analogues induce apoptosis through SHP-1 dependent STAT3 inactivation in human breast cancer cells. Breast Cancer Res 15(4):R63
- 188. Su TH, Shiau CW, Jao P et al (2015) Sorafenib and its derivative SC-1 exhibit antifibrotic effects through signal transducer and activator of transcription 3 inhibition. Proc Natl Acad Sci U S A 112(23):7243–7248
- Wang CT, Lin CS, Shiau CW et al (2013) SC-1, a sorafenib derivative, shows anti-tumor effects in osteogenic sarcoma cells. J Orthop Res 31(2):335–342
- 190. Pandey MK, Sung B, Aggarwal BB (2010) Betulinic acid suppresses STAT3 activation pathway through induction of protein tyrosine phosphatase SHP-1 in human multiple myeloma cells. Int J Cancer 127(2):282–292
- 191. Ahn KS, Sethi G, Sung B et al (2008) Guggulsterone, a farnesoid X receptor antagonist, inhibits constitutive and inducible STAT3 activation through induction of a protein tyrosine phosphatase SHP-1. Cancer Res 68(11):4406–4415
- 192. Al-Jamal HA, Mat Jusoh SA, Hassan R et al (2015) Enhancing SHP-1 expression with 5-azacytidine may inhibit STAT3 activation and confer sensitivity in lestaurtinib (CEP-701)resistant FLT3-ITD positive acute myeloid leukemia. BMC Cancer 15:869
- 193. Chen KF, Su JC, Liu CY et al (2012) A novel obatoclax derivative, SC-2001, induces apoptosis in hepatocellular carcinoma cells through SHP-1-dependent STAT3 inactivation. Cancer Lett 321(1):27–35

- 194. Fan LC, Teng HW, Shiau CW et al (2014) SHP-1 is a target of regorafenib in colorectal cancer. Oncotarget 5(15):6243–6251
- 195. Kim C, Cho SK, Kapoor S et al (2014) beta-Caryophyllene oxide inhibits constitutive and inducible STAT3 signaling pathway through induction of the SHP-1 protein tyrosine phosphatase. Mol Carcinog 53(10):793–806
- 196. Kunnumakkara AB, Nair AS, Sung B et al (2009) Boswellic acid blocks signal transducers and activators of transcription 3 signaling, proliferation, and survival of multiple myeloma via the protein tyrosine phosphatase SHP-1. Mol Cancer Res 7(1):118–128
- 197. Lee JH, Chiang SY, Nam D et al (2014) Capillarisin inhibits constitutive and inducible STAT3 activation through induction of SHP-1 and SHP-2 tyrosine phosphatases. Cancer Lett 345(1):140–148
- 198. Rajendran P, Li F, Shanmugam MK et al (2012) Honokiol inhibits signal transducer and activator of transcription-3 signaling, proliferation, and survival of hepatocellular carcinoma cells via the protein tyrosine phosphatase SHP-1. J Cell Physiol 227(5):2184–2195
- 199. Tai WT, Cheng AL, Shiau CW et al (2012) Dovitinib induces apoptosis and overcomes sorafenib resistance in hepatocellular carcinoma through SHP-1-mediated inhibition of STAT3. Mol Cancer Ther 11(2):452–463
- 200. Wang J, Zhang L, Chen G et al (2014) Small molecule 1'-acetoxychavicol acetate suppresses breast tumor metastasis by regulating the SHP-1/STAT3/MMPs signaling pathway. Breast Cancer Res Treat 148(2):279–289
- 201. Prasad S, Pandey MK, Yadav VR et al (2011) Gambogic acid inhibits STAT3 phosphorylation through activation of protein tyrosine phosphatase SHP-1: potential role in proliferation and apoptosis. Cancer Prev Res (Phila) 4(7):1084–1094
- 202. Phromnoi K, Prasad S, Gupta SC et al (2011) Dihydroxypentamethoxyflavone downregulates constitutive and inducible signal transducers and activators of transcription-3 through the induction of tyrosine phosphatase SHP-1. Mol Pharmacol 80(5):889–899
- 203. Pandey MK, Sung B, Ahn KS et al (2009) Butein suppresses constitutive and inducible signal transducer and activator of transcription (STAT) 3 activation and STAT3-regulated gene products through the induction of a protein tyrosine phosphatase SHP-1. Mol Pharmacol 75(3):525–533
- 204. Kang SH, Jeong SJ, Kim SH et al (2012) Icariside II induces apoptosis in U937 acute myeloid leukemia cells: role of inactivation of STAT3-related signaling. PLoS One 7(4):e28706
- 205. Sandur SK, Pandey MK, Sung B et al (2010) 5-hydroxy-2-methyl-1,4-naphthoquinone, a vitamin K3 analogue, suppresses STAT3 activation pathway through induction of protein tyrosine phosphatase, SHP-1: potential role in chemosensitization. Mol Cancer Res 8(1):107–118
- 206. Cui Q, Jiang W, Wang Y et al (2008) Transfer of suppressor of cytokine signaling 3 by an oncolytic adenovirus induces potential antitumor activities in hepatocellular carcinoma. Hepatology 47(1):105–112
- 207. Wei X, Wang G, Li W et al (2014) Activation of the JAK-STAT3 pathway is associated with the growth of colorectal carcinoma cells. Oncol Rep 31(1):335–341
- 208. Woetmann A, Nielsen M, Christensen ST et al (1999) Inhibition of protein phosphatase 2A induces serine/threonine phosphorylation, subcellular redistribution, and functional inhibition of STAT3. Proc Natl Acad Sci U S A 96(19):10620–10625
- 209. Zgheib C, Zouein FA, Chidiac R et al (2012) Calyculin A reveals serine/threonine phosphatase protein phosphatase 1 as a regulatory nodal point in canonical signal transducer and activator of transcription 3 signaling of human microvascular endothelial cells. J Interferon Cytokine Res 32(2):87–94
- Zhang Q, Raghunath PN, Xue L et al (2002) Multilevel dysregulation of STAT3 activation in anaplastic lymphoma kinase-positive T/null-cell lymphoma. J Immunol 168(1):466–474
- 211. Oka M, Sumita N, Sakaguchi M et al (2009) 12-O-tetradecanoylphorbol-13-acetate inhibits melanoma growth by inactivation of STAT3 through protein kinase C-activated tyrosine phosphatase(s). J Biol Chem 284(44):30416–30423
- 212. McGowan MP, Tardif JC, Ceska R et al (2012) Randomized, placebo-controlled trial of mipomersen in patients with severe hypercholesterolemia receiving maximally tolerated lipid-lowering therapy. PLoS One 7(11):e49006

- 213. Stein EA, Dufour R, Gagne C et al (2012) Apolipoprotein B synthesis inhibition with mipomersen in heterozygous familial hypercholesterolemia: results of a randomized, doubleblind, placebo-controlled trial to assess efficacy and safety as add-on therapy in patients with coronary artery disease. Circulation 126(19):2283–2292
- 214. Rao DD, Senzer N, Cleary MA et al (2009) Comparative assessment of siRNA and shRNA off target effects: what is slowing clinical development. Cancer Gene Ther 16(11):807–809
- Rao DD, Vorhies JS, Senzer N et al (2009) siRNA vs. shRNA: similarities and differences. Adv Drug Deliv Rev 61(9):746–759
- 216. Chen JY, Luo B, Guo XB et al (2011) Double suicide gene therapy with RNAi targeting to STAT3 inhibits the growth of colorectal carcinoma cells in vitro. Zhonghua Zhong Liu Za Zhi [Chinese Journal of Oncology] 33(2):91–96
- 217. Gao LF, Wen LJ, Yu H et al (2006) Knockdown of Stat3 expression using RNAi inhibits growth of laryngeal tumors in vivo. Acta Pharmacol Sin 27(3):347–352
- 218. Gao Z, Huang C, Qiu ZJ et al (2008) Effect of RNAi-mediated STAT3 gene inhibition on metastasis of human pancreatic cancer cells. Zhonghua Wai Ke Za Zhi [Chinese Journal of Surgery] 46(13):1010–1013
- 219. Kaymaz BT, Selvi N, Gunduz C et al (2013) Repression of STAT3, STAT5A, and STAT5B expressions in chronic myelogenous leukemia cell line K-562 with unmodified or chemically modified siRNAs and induction of apoptosis. Ann Hematol 92(2):151–162
- 220. Konnikova L, Kotecki M, Kruger MM et al (2003) Knockdown of STAT3 expression by RNAi induces apoptosis in astrocytoma cells. BMC Cancer 3:23
- 221. LaPan P, Zhang J, Pan J et al (2008) Single cell cytometry of protein function in RNAi treated cells and in native populations. BMC Cell Biol 9:43
- 222. Li GH, Wei H, Lv SQ et al (2010) Knockdown of STAT3 expression by RNAi suppresses growth and induces apoptosis and differentiation in glioblastoma stem cells. Int J Oncol 37(1):103–110
- 223. Wang HR, Li XM, Lu XY (2009) Silencing of signal transducer and activator of transcription 3 gene expression using RNAi enhances the efficacy of radiotherapy for laryngeal carcinoma in vivo. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 44(7):591–596
- 224. Zhao SH, Zhao F, Zheng JY et al (2011) Knockdown of stat3 expression by RNAi inhibits in vitro growth of human ovarian cancer. Radiol Oncol 45(3):196–203
- 225. Ball DP, Lewis AM, Williams D, Resetca D, Wilson DJ, Gunning PT. Signal transducer and activator of transcription 3 (STAT3) inhibitor, S3I-201, acts as a potent and non-selective alkylating agent. Oncotarget. 2016 Apr 12;7(15):20669–20679
- 226. Shrikant P, Khoruts A, Mescher MF (1999) CTLA-4 blockade reverses CD8+ T cell tolerance to tumor by a CD4+ T cell- and IL-2-dependent mechanism. Immunity 11(4):483–493
- 227. Frank DA (2007) STAT3 as a central mediator of neoplastic cellular transformation. Cancer Lett 251(2):199–210
- 228. Germain D, Frank DA (2007) Targeting the cytoplasmic and nuclear functions of signal transducers and activators of transcription 3 for cancer therapy. Clin Cancer Res 13(19):5665–5669
- Herrmann A, Vogt M, Monnigmann M et al (2007) Nucleocytoplasmic shuttling of persistently activated STAT3. J Cell Sci 120(Pt 18):3249–3261
- 230. Jing N, Tweardy DJ (2005) Targeting Stat3 in cancer therapy. Anticancer Drugs 16(6):601–607
- Redell MS, Tweardy DJ (2005) Targeting transcription factors for cancer therapy. Curr Pharm Des 11(22):2873–2887
- 232. Bhutani M, Pathak AK, Nair AS et al (2007) Capsaicin is a novel blocker of constitutive and interleukin-6-inducible STAT3 activation. Clin Cancer Res 13(10):3024–3032
- 233. Oyagbemi AA, Saba AB, Azeez OI (2010) Capsaicin: a novel chemopreventive molecule and its underlying molecular mechanisms of action. Indian J Cancer 47(1):53–58
- 234. Pramanik KC, Fofaria NM, Gupta P et al (2015) Inhibition of beta-catenin signaling suppresses pancreatic tumor growth by disrupting nuclear beta-catenin/TCF-1 complex: critical role of STAT-3. Oncotarget 6(13):11561–11574

- 235. Lee HK, Seo IA, Shin YK et al (2009) Capsaicin inhibits the IL-6/STAT3 pathway by depleting intracellular gp130 pools through endoplasmic reticulum stress. Biochem Biophys Res Commun 382(2):445–450
- 236. Xue P, Zhao Y, Liu Y et al (2014) A novel compound RY10-4 induces apoptosis and inhibits invasion via inhibiting STAT3 through ERK-, p38-dependent pathways in human lung adenocarcinoma A549 cells. Chem Biol Interact 209:25–34
- 237. Xu Y, Xu X, Gao X et al (2014) Shikonin suppresses IL-17-induced VEGF expression via blockage of JAK2/STAT3 pathway. Int Immunopharmacol 19(2):327–333
- 238. Walker SR, Chaudhury M, Frank DA (2011) STAT3 inhibition by microtubule-targeted drugs: dual molecular effects of chemotherapeutic agents. Mol Cell Pharmacol 3(1):13–19
- 239. Walker SR, Chaudhury M, Nelson EA et al (2010) Microtubule-targeted chemotherapeutic agents inhibit signal transducer and activator of transcription 3 (STAT3) signaling. Mol Pharmacol 78(5):903–908
- 240. Zhang L, Xu X, Yang R et al (2015) Paclitaxel attenuates renal interstitial fibroblast activation and interstitial fibrosis by inhibiting STAT3 signaling. Drug Des Devel Ther 9:2139–2148
- 241. Nelson EA, Walker SR, Kepich A et al (2008) Nifuroxazide inhibits survival of multiple myeloma cells by directly inhibiting STAT3. Blood 112(13):5095–5102
- 242. Li S, Priceman SJ, Xin H et al (2013) Icaritin inhibits JAK/STAT3 signaling and growth of renal cell carcinoma. PLoS One 8(12):e81657
- 243. Wu T, Wang S, Wu J et al (2015) Icaritin induces lytic cytotoxicity in extranodal NK/T-cell lymphoma. J Exp Clin Cancer Res 34:17
- 244. Zhao H, Guo Y, Li S et al (2015) A novel anti-cancer agent Icaritin suppresses hepatocellular carcinoma initiation and malignant growth through the IL-6/Jak2/Stat3 pathway. Oncotarget 6(31):31927–31943
- 245. Zhu S, Wang Z, Li Z et al (2015) Icaritin suppresses multiple myeloma, by inhibiting IL-6/ JAK2/STAT3. Oncotarget 6(12):10460–10472
- 246. Jung JH, Yun M, Choo EJ et al (2015) A derivative of epigallocatechin-3-gallate induces apoptosis via SHP-1-mediated suppression of BCR-ABL and STAT3 signalling in chronic myelogenous leukaemia. Br J Pharmacol 172(14):3565–3578
- 247. Chakraborty A, Tweardy DJ (1998) Granulocyte colony-stimulating factor activates a 72-kDa isoform of STAT3 in human neutrophils. J Leuk Biol 64(5):675–680
- 248. Oda A, Wakao H, Fujita H (2002) Calpain is a signal transducer and activator of transcription (STAT) 3 and STAT5 protease. Blood 99(5):1850–1852
- 249. Nie XH, Ou-yang J, Xing Y et al (2015) Paeoniflorin inhibits human glioma cells via STAT3 degradation by the ubiquitin-proteasome pathway. Drug Des Devel Ther 9:5611–5622
- 250. Fu J, Chen D, Zhao B et al (2012) Luteolin induces carcinoma cell apoptosis through binding Hsp90 to suppress constitutive activation of STAT3. PLoS One 7(11):e49194
- 251. Darnowski JW, Goulette FA, Guan YJ et al (2006) Stat3 cleavage by caspases: impact on full-length Stat3 expression, fragment formation, and transcriptional activity. J Biol Chem 281(26):17707–17717
- 252. Matthews JR, Watson SM, Tevendale MC et al (2007) Caspase-dependent proteolytic cleavage of STAT3alpha in ES cells, in mammary glands undergoing forced involution and in breast cancer cell lines. BMC Cancer 7:29
- 253. Namanja AT, Wang J, Buettner R et al (2016) Allosteric communication across STAT3 domains associated with STAT3 function and disease-causing mutation. J Mol Biol 428(3):579–589
- 254. Minus MB, Liu W, Vohidov F et al (2015) Rhodium(II) proximity-labeling identifies a novel target site on STAT3 for inhibitors with potent anti-leukemia activity. Angew Chem Int Ed Engl 54(44):13085–13089
- 255. Ball DP, Lewis AM, Williams D, Resetca D, Wilson DJ, Gunning PT (2016) Signal transducer and activator of transcription 3 (STAT3) inhibitor, S3I-201, acts as a potent and nonselective alkylating agent. Oncotarget 7(15):20669–20679. doi:10.18632/oncotarget.7838
- 256. Morlacchi P, Robertson FM, Klostergaard J et al (2014) Targeting SH2 domains in breast cancer. Future Med Chem 6(17):1909–1926

- 257. Shao H, Xu X, Mastrangelo MA et al (2004) Structural requirements for signal transducer and activator of transcription 3 binding to phosphotyrosine ligands containing the YXXQ motif. J Biol Chem 279(18):18967–18973
- 258. Miyoshi K, Takaishi M, Nakajima K et al (2011) Stat3 as a therapeutic target for the treatment of psoriasis: a clinical feasibility study with STA-21, a Stat3 inhibitor. J Invest Dermatol 131(1):108–117
- 259. Chen R, Chen B (2015) Siltuximab (CNTO 328): a promising option for human malignancies. Drug Des Dev Ther 9:3455–3458
- 260. Dijkgraaf EM, Santegoets SJ, Reyners AK et al (2015) A phase I trial combining carboplatin/ doxorubicin with tocilizumab, an anti-IL-6R monoclonal antibody, and interferon-alpha2b in patients with recurrent epithelial ovarian cancer. Ann Oncol 26(10):2141–2149
- 261. Kennedy GA, Varelias A, Vuckovic S et al (2014) Addition of interleukin-6 inhibition with tocilizumab to standard graft-versus-host disease prophylaxis after allogeneic stem-cell transplantation: a phase 1/2 trial. Lancet Oncol 15(13):1451–1459
- 262. Patel KP, Newberry KJ, Luthra R et al (2015) Correlation of mutation profile and response in patients with myelofibrosis treated with ruxolitinib. Blood 126(6):7907
- 263. Daver N, Cortes J, Newberry K et al (2015) Ruxolitinib in combination with lenalidomide as therapy for patients with myelofibrosis. Haematologica 100(8):1058–1063
- 264. Loh ML, Tasian SK, Rabin KR et al (2015) A phase 1 dosing study of ruxolitinib in children with relapsed or refractory solid tumors, leukemias, or myeloproliferative neoplasms: A Children's Oncology Group Phase 1 Consortium Study (ADVL1011). Pediatr Blood Cancer 62(10):1717–1724
- 265. Mead AJ, Milojkovic D, Knapper S et al (2015) Response to ruxolitinib in patients with intermediate-1-, intermediate-2-, and high-risk myelofibrosis: results of the UK ROBUST Trial. Br J Haematol 170(1):29–39
- 266. Arana Yi C, Tam CS, Verstovsek S (2015) Efficacy and safety of ruxolitinib in the treatment of patients with myelofibrosis. Future Oncol 11(5):719–733
- 267. Pemmaraju N, Kantarjian H, Kadia T et al (2015) A phase I/II study of the Janus kinase (JAK)1 and 2 inhibitor ruxolitinib in patients with relapsed or refractory acute myeloid leukemia. Clin Lymphoma Myeloma Leuk 15(3):171–176
- Santos FP, Verstovsek S (2014) Efficacy of ruxolitinib for myelofibrosis. Expert Opin Pharmacother 15(10):1465–1473
- Hedvat M, Huszar D, Herrmann A et al (2009) The JAK2 inhibitor AZD1480 potently blocks Stat3 signaling and oncogenesis in solid tumors. Cancer Cell 16(6):487–497
- 270. Suryani S, Bracken LS, Harvey RC et al (2015) Evaluation of the in vitro and in vivo efficacy of the JAK inhibitor AZD1480 against JAK-mutated acute lymphoblastic leukemia. Mol Cancer Ther 14(2):364–374
- 271. Wang SW, Hu J, Guo QH et al (2014) AZD1480, a JAK inhibitor, inhibits cell growth and survival of colorectal cancer via modulating the JAK2/STAT3 signaling pathway. Oncol Rep 32(5):1991–1998
- 272. Yan S, Li Z, Thiele CJ (2013) Inhibition of STAT3 with orally active JAK inhibitor, AZD1480, decreases tumor growth in neuroblastoma and pediatric sarcomas in vitro and in vivo. Oncotarget 4(3):433–445
- 273. Bendell JC, Hong DS, Burris HA 3rd et al (2014) Phase 1, open-label, dose-escalation, and pharmacokinetic study of STAT3 inhibitor OPB-31121 in subjects with advanced solid tumors. Cancer Chemother Pharmacol 74(1):125–130
- 274. Brambilla L, Genini D, Laurini E et al (2015) Hitting the right spot: mechanism of action of OPB-31121, a novel and potent inhibitor of the signal transducer and activator of transcription 3 (STAT3). Mol Oncol 9(6):1194–1206
- 275. Hayakawa F, Sugimoto K, Harada Y et al (2013) A novel STAT inhibitor, OPB-31121, has a significant antitumor effect on leukemia with STAT-addictive oncokinases. Blood Cancer J 3:e166

- 276. Kim MJ, Nam HJ, Kim HP et al (2013) OPB-31121, a novel small molecular inhibitor, disrupts the JAK2/STAT3 pathway and exhibits an antitumor activity in gastric cancer cells. Cancer Lett 335(1):145–152
- 277. Oh DY, Lee SH, Han SW et al (2015) Phase I study of OPB-31121, an oral STAT3 inhibitor, in patients with advanced solid tumors. Cancer Res Treat 47(4):607–615
- 278. Okusaka T, Ueno H, Ikeda M et al (2015) Phase 1 and pharmacological trial of OPB-31121, a signal transducer and activator of transcription-3 inhibitor, in patients with advanced hepatocellular carcinoma. Hepatol Res 45(13):1283–1291
- 279. Pardanani A, Harrison C, Cortes JE et al (2015) Safety and efficacy of Fedratinib in patients with primary or secondary myelofibrosis: a randomized clinical trial. JAMA Oncol 1(5):643–651
- 280. Pardanani A, Tefferi A, Jamieson C et al (2015) A phase 2 randomized dose-ranging study of the JAK2-selective inhibitor fedratinib (SAR302503) in patients with myelofibrosis. Blood Cancer J 5:e335
- 281. Polverelli N, Catani L, Vianelli N et al (2015) Ruxolitinib- but not fedratinib-induced extreme thrombocytosis: the combination therapy with hydroxyurea and ruxolitinib is effective in reducing platelet count and splenomegaly/constitutional symptoms. Ann Hematol 94(9):1585–1587
- 282. Zhang M, Xu CR, Shamiyeh E et al (2014) A randomized, placebo-controlled study of the pharmacokinetics, pharmacodynamics, and tolerability of the oral JAK2 inhibitor fedratinib (SAR302503) in healthy volunteers. J Clin Pharmacol 54(4):415–421
- 283. Takakura A, Nelson EA, Haque N et al (2011) Pyrimethamine inhibits adult polycystic kidney disease by modulating STAT signaling pathways. Hum Mol Genet 20(21):4143–4154
- Derenzini E, Younes A (2013) Targeting the JAK-STAT pathway in lymphoma: a focus on pacritinib. Expert Opin Investig Drugs 22(6):775–785
- 285. Komrokji RS, Seymour JF, Roberts AW et al (2015) Results of a phase 2 study of pacritinib (SB1518), a JAK2/JAK2(V617F) inhibitor, in patients with myelofibrosis. Blood 125(17):2649–2655
- 286. Huang Y, Zhou X, Liu A et al (2014) Signal transducer and activator of transcription-3 inhibitor WP1066 affects human tongue squamous cell carcinoma proliferation and apoptosis in vitro and in vivo. Zhonghua Kou Qiang Yi Xue Za Zhi 49(5):308–313
- 287. Lu K, Fang XS, Feng LL et al (2015) The STAT3 inhibitor WP1066 reverses the resistance of chronic lymphocytic leukemia cells to histone deacetylase inhibitors induced by interleukin-6. Cancer Lett 359(2):250–258
- 288. Verstovsek S, Manshouri T, Quintas-Cardama A et al (2008) WP1066, a novel JAK2 inhibitor, suppresses proliferation and induces apoptosis in erythroid human cells carrying the JAK2 V617F mutation. Clin Cancer Res 14(3):788–796
- Zhou X, Ren Y, Liu A et al (2014) STAT3 inhibitor WP1066 attenuates miRNA-21 to suppress human oral squamous cell carcinoma growth in vitro and in vivo. Oncol Rep 31(5):2173–2180
- 290. Zhou X, Ren Y, Liu A et al (2014) WP1066 sensitizes oral squamous cell carcinoma cells to cisplatin by targeting STAT3/miR-21 axis. Sci Rep 4:7461
- 291. Ogura M, Uchida T, Terui Y et al (2015) Phase I study of OPB-51602, an oral inhibitor of signal transducer and activator of transcription 3, in patients with relapsed/refractory hema-tological malignancies. Cancer Sci 106(7):896–901
- 292. Sen M, Thomas SM, Kim S et al (2012) First-in-human trial of a STAT3 decoy oligonucleotide in head and neck tumors: implications for cancer therapy. Cancer Discov 2(8): 694–705
- 293. Hong D, Kurzrock R, Kim Y et al (2015) AZD9150, a next-generation antisense oligonucleotide inhibitor of STAT3 with early evidence of clinical activity in lymphoma and lung cancer. Sci Transl Med 7(314):314ra185
- 294. Banes-Berceli AK, Shaw S, Ma G et al (2006) Effect of simvastatin on high glucose- and angiotensin II-induced activation of the JAK/STAT pathway in mesangial cells. Am J Physiol Renal Physiol 291(1):F116–F121

- 295. Fang Z, Tang Y, Fang J et al (2013) Simvastatin inhibits renal cancer cell growth and metastasis via AKT/mTOR, ERK and JAK2/STAT3 pathway. PLoS One 8(5):e62823
- 296. Oh B, Kim TY, Min HJ et al (2013) Synergistic killing effect of imatinib and simvastatin on imatinib-resistant chronic myelogenous leukemia cells. Anticancer Drugs 24(1):20–31
- 297. Chang Q, Daly L, Bromberg J (2014) The IL-6 feed-forward loop: a driver of tumorigenesis. Semin Immunol 26(1):48–53
- 298. Fisher DT, Appenheimer MM, Evans SS (2014) The two faces of IL-6 in the tumor microenvironment. Semin Immunol 26(1):38–47
- 299. Heo TH, Wahler J, Suh N (2016) Potential therapeutic implications of IL-6/IL-6R/gp130targeting agents in breast cancer. Oncotarget 7(13):15460–15473
- 300. Markham A, Patel T (2014) Siltuximab: first global approval. Drugs 74(10):1147-1152
- 301. van Rhee F, Fayad L, Voorhees P et al (2010) Siltuximab, a novel anti-interleukin-6 monoclonal antibody, for Castleman's disease. J Clin Oncol 28(23):3701–3708
- 302. van Rhee F, Wong RS, Munshi N et al (2014) Siltuximab for multicentric Castleman's disease: a randomised, double-blind, placebo-controlled trial. Lancet Oncol 15(9):966–974
- 303. Suzuki K, Ogura M, Abe Y et al (2015) Phase 1 study in Japan of siltuximab, an anti-IL-6 monoclonal antibody, in relapsed/refractory multiple myeloma. Int J Hematol 101(3):286–294
- 304. Doggrell SA (2008) Is tocilizumab an option for the treatment of arthritis? Expert Opin Pharmacother 9(11):2009–2013
- Ganetsky A (2013) Ruxolitinib: a new treatment option for myelofibrosis. Pharmacotherapy 33(1):84–92
- 306. Deininger M, Radich J, Burn TC et al (2015) The effect of long-term ruxolitinib treatment on JAK2p.V617F allele burden in patients with myelofibrosis. Blood 126(13):1551–1554
- 307. Hahm ER, Singh SV (2010) Sulforaphane inhibits constitutive and interleukin-6-induced activation of signal transducer and activator of transcription 3 in prostate cancer cells. Cancer Prev Res (Phila) 3(4):484–494
- 308. Hutzen B, Willis W, Jones S et al (2009) Dietary agent, benzyl isothiocyanate inhibits signal transducer and activator of transcription 3 phosphorylation and collaborates with sulforaphane in the growth suppression of PANC-1 cancer cells. Cancer Cell Int 9:24
- 309. Kirito K, Osawa M, Morita H et al (2002) A functional role of Stat3 in in vivo megakaryopoiesis. Blood 99(9):3220–3227
- 310. Mantel C, Messina-Graham S, Moh A et al (2012) Mouse hematopoietic cell-targeted STAT3 deletion: stem/progenitor cell defects, mitochondrial dysfunction, ROS overproduction, and a rapid aging-like phenotype. Blood 120(13):2589–2599
- 311. Arnaud C, Burger F, Steffens S et al (2005) Statins reduce interleukin-6-induced C-reactive protein in human hepatocytes: new evidence for direct antiinflammatory effects of statins. Arterioscler Thromb Vasc Biol 25(6):1231–1236
- 312. Ivanov VN, Hei TK (2011) Regulation of apoptosis in human melanoma and neuroblastoma cells by statins, sodium arsenite and TRAIL: a role of combined treatment versus monotherapy. Apoptosis 16(12):1268–1284
- 313. Omoigui S (2007) The Interleukin-6 inflammation pathway from cholesterol to aging--role of statins, bisphosphonates and plant polyphenols in aging and age-related diseases. Immun Ageing 4:1
- 314. Lavecchia A, Di Giovanni C, Novellino E (2011) STAT-3 inhibitors: state of the art and new horizons for cancer treatment. Curr Med Chem 18(16):2359–2375
- Yin H, Hamilton AD (2005) Strategies for targeting protein–protein interactions with synthetic agents. Angew Chem Int Ed Engl 44(27):4130–4163
- 316. Sayed D, Badrawy H, Gaber N et al (2014) p-Stat3 and bcr/abl gene expression in chronic myeloid leukemia and their relation to imatinib therapy. Leuk Res 38(2):243–250
- 317. Epling-Burnette PK, Liu JH, Catlett-Falcone R et al (2001) Inhibition of STAT3 signaling leads to apoptosis of leukemic large granular lymphocytes and decreased Mcl-1 expression. J Clin Invest 107(3):351–362

5 STAT3 Inhibitors in Cancer: A Comprehensive Update

- Andersson EI, Rajala HL, Eldfors S et al (2013) Novel somatic mutations in large granular lymphocytic leukemia affecting the STAT-pathway and T-cell activation. Blood Cancer J 3:e168
- 319. Frank DA, Mahajan S, Ritz J (1997) B lymphocytes from patients with chronic lymphocytic leukemia contain signal transducer and activator of transcription (STAT) 1 and STAT3 constitutively phosphorylated on serine residues. J Clin Invest 100(12):3140–3148
- 320. Hazan-Halevy I, Harris D, Liu Z et al (2010) STAT3 is constitutively phosphorylated on serine 727 residues, binds DNA, and activates transcription in CLL cells. Blood 115(14):2852–2863
- 321. Skinnider BF, Elia AJ, Gascoyne RD et al (2002) Signal transducer and activator of transcription 6 is frequently activated in Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma. Blood 99(2):618–626
- 322. Khoury JD, Medeiros LJ, Rassidakis GZ et al (2003) Differential expression and clinical significance of tyrosine-phosphorylated STAT3 in ALK+ and ALK- anaplastic large cell lymphoma. Clin Cancer Res 9(10 Pt 1):3692–3699
- 323. McKenzie RC, Jones CL, Tosi I et al (2012) Constitutive activation of STAT3 in Sezary syndrome is independent of SHP-1. Leukemia 26(2):323–331
- 324. Zamo A, Chiarle R, Piva R et al (2002) Anaplastic lymphoma kinase (ALK) activates Stat3 and protects hematopoietic cells from cell death. Oncogene 21(7):1038–1047
- 325. Schlette EJ, Medeiros LJ, Goy A et al (2004) Survivin expression predicts poorer prognosis in anaplastic large-cell lymphoma. J Clin Oncol 22(9):1682–1688
- 326. Wu ZL, Song YQ, Shi YF et al (2011) High nuclear expression of STAT3 is associated with unfavorable prognosis in diffuse large B-cell lymphoma. J Hematol Oncol 4(1):31
- 327. Stewart DA, Bahlis N, Mansoor A (2009) pY-STAT3 and p53 expression predict outcome for poor prognosis diffuse large B-cell lymphoma treated with high dose chemotherapy and autologous stem cell transplantation. Leuk Lymphoma 50(8):1276–1282
- 328. Ding BB, Yu JJ, Yu RY et al (2008) Constitutively activated STAT3 promotes cell proliferation and survival in the activated B-cell subtype of diffuse large B-cell lymphomas. Blood 111(3):1515–1523
- 329. Huang X, Meng B, Iqbal J et al (2013) Activation of the STAT3 signaling pathway is associated with poor survival in diffuse large B-cell lymphoma treated with R-CHOP. J Clin Oncol 31(36):4520–4528
- 330. Berishaj M, Gao SP, Ahmed S et al (2007) Stat3 is tyrosine-phosphorylated through the interleukin-6/glycoprotein 130/Janus kinase pathway in breast cancer. Breast Cancer Res 9(3):R32
- 331. Diaz N, Minton S, Cox C et al (2006) Activation of stat3 in primary tumors from high-risk breast cancer patients is associated with elevated levels of activated SRC and survivin expression. Clin Cancer Res 12(1):20–28
- 332. Jiang R, Jin Z, Liu Z et al (2011) Correlation of activated STAT3 expression with clinicopathologic features in lung adenocarcinoma and squamous cell carcinoma. Mol Diagn Ther 15(6):347–352
- 333. Xu YH, Lu S (2014) A meta-analysis of STAT3 and phospho-STAT3 expression and survival of patients with non-small-cell lung cancer. Eur J Surg Oncol 40(3):311–317
- 334. Chen CL, Hsieh FC, Lieblein JC et al (2007) Stat3 activation in human endometrial and cervical cancers. Br J Cancer 96(4):591–599
- 335. Takemoto S, Ushijima K, Kawano K et al (2009) Expression of activated signal transducer and activator of transcription-3 predicts poor prognosis in cervical squamous-cell carcinoma. Br J Cancer 101(6):967–972
- 336. Qin J, Yang B, Xu BQ et al (2014) Concurrent CD44s and STAT3 expression in human clear cell renal cellular carcinoma and its impact on survival. Int J Clin Exp Pathol 7(6):3235–3244
- 337. Lin L, Amin R, Gallicano GI et al (2009) The STAT3 inhibitor NSC 74859 is effective in hepatocellular cancers with disrupted TGF-beta signaling. Oncogene 28(7):961–972

- 338. Yang SF, Wang SN, Wu CF et al (2007) Altered p-STAT3 (tyr705) expression is associated with histological grading and intratumour microvessel density in hepatocellular carcinoma. J Clin Pathol 60(6):642–648
- Dokduang H, Techasen A, Namwat N et al (2014) STATs profiling reveals predominantlyactivated STAT3 in cholangiocarcinoma genesis and progression. J Hepatobiliary Pancreat Sci 21(10):767–776
- 340. Morikawa T, Baba Y, Yamauchi M et al (2011) STAT3 expression, molecular features, inflammation patterns, and prognosis in a database of 724 colorectal cancers. Clin Cancer Res 17(6):1452–1462
- 341. Savarese TM, Campbell CL, McQuain C et al (2002) Coexpression of oncostatin M and its receptors and evidence for STAT3 activation in human ovarian carcinomas. Cytokine 17(6):324–334
- 342. Silver DL, Naora H, Liu J et al (2004) Activated signal transducer and activator of transcription (STAT) 3: localization in focal adhesions and function in ovarian cancer cell motility. Cancer Res 64(10):3550–3558
- 343. Huang C, Huang R, Chang W et al (2012) The expression and clinical significance of pSTAT3, VEGF and VEGF-C in pancreatic adenocarcinoma. Neoplasma 59(1):52–61
- 344. Lee TL, Yeh J, Van Waes C et al (2006) Epigenetic modification of SOCS-1 differentially regulates STAT3 activation in response to interleukin-6 receptor and epidermal growth factor receptor signaling through JAK and/or MEK in head and neck squamous cell carcinomas. Mol Cancer Ther 5(1):8–19
- 345. Seethala RR, Gooding WE, Handler PN et al (2008) Immunohistochemical analysis of phosphotyrosine signal transducer and activator of transcription 3 and epidermal growth factor receptor autocrine signaling pathways in head and neck cancers and metastatic lymph nodes. Clin Cancer Res 14(5):1303–1309
- 346. Masuda M, Suzui M, Yasumatu R et al (2002) Constitutive activation of signal transducers and activators of transcription 3 correlates with cyclin D1 overexpression and may provide a novel prognostic marker in head and neck squamous cell carcinoma. Cancer Res 62(12):3351–3355
- 347. Shah NG, Trivedi TI, Tankshali RA et al (2006) Stat3 expression in oral squamous cell carcinoma: association with clinicopathological parameters and survival. Int J Biol Markers 21(3):175–183
- 348. Mizoguchi M, Betensky RA, Batchelor TT et al (2006) Activation of STAT3, MAPK, and AKT in malignant astrocytic gliomas: correlation with EGFR status, tumor grade, and survival. J Neuropathol Exp Neurol 65(12):1181–1188
- 349. Abou-Ghazal M, Yang DS, Qiao W et al (2008) The incidence, correlation with tumorinfiltrating inflammation, and prognosis of phosphorylated STAT3 expression in human gliomas. Clin Cancer Res 14(24):8228–8235
- 350. Lo HW, Cao X, Zhu H et al (2008) Constitutively activated STAT3 frequently coexpresses with epidermal growth factor receptor in high-grade gliomas and targeting STAT3 sensitizes them to Iressa and alkylators. Clin Cancer Res 14(19):6042–6054
- 351. Liu HJ, Moroi Y, Masuda T et al (2006) Expression of phosphorylated Stat3, cyclin D1 and Bcl-xL in extramammary Paget disease. Br J Dermatol 154(5):926–932
- 352. Dong W, Cui J, Tian X et al (2014) Aberrant sonic hedgehog signaling pathway and STAT3 activation in papillary thyroid cancer. Int J Clin Exp Med 7(7):1786–1793
- 353. Bos M, Mendelsohn J, Kim YM et al (1997) PD153035, a tyrosine kinase inhibitor, prevents epidermal growth factor receptor activation and inhibits growth of cancer cells in a receptor number-dependent manner. Clin Cancer Res 3(11):2099–2106
- 354. Kunkel MW, Hook KE, Howard CT et al (1996) Inhibition of the epidermal growth factor receptor tyrosine kinase by PD153035 in human A431 tumors in athymic nude mice. Invest New Drugs 13(4):295–302
- 355. Li L, Shaw PE (2002) Autocrine-mediated activation of STAT3 correlates with cell proliferation in breast carcinoma lines. J Biol Chem 277(20):17397–17405

- 356. Fujiwara Y, Komohara Y, Kudo R et al (2011) Oleanolic acid inhibits macrophage differentiation into the M2 phenotype and glioblastoma cell proliferation by suppressing the activation of STAT3. Oncol Rep 26(6):1533–1537
- 357. Kim HS, Sung HY, Kim MS et al (2013) Oleanolic acid suppresses resistin induction in adipocytes by modulating Tyk-STAT signaling. Nutr Res 33(2):144–153
- 358. Chen X, Du Y, Nan J et al (2013) Brevilin A, a novel natural product, inhibits janus kinase activity and blocks STAT3 signaling in cancer cells. PLoS One 8(5):e63697
- 359. Boyle DL, Soma K, Hodge J et al (2015) The JAK inhibitor tofacitinib suppresses synovial JAK1-STAT signalling in rheumatoid arthritis. Ann Rheum Dis 74(6):1311–1316
- 360. Gao W, McGarry T, Orr C et al (2016) Tofacitinib regulates synovial inflammation in psoriatic arthritis, inhibiting STAT activation and induction of negative feedback inhibitors. Ann Rheum Dis 75(1):311–315
- 361. Rosengren S, Corr M, Firestein GS et al (2012) The JAK inhibitor CP-690,550 (tofacitinib) inhibits TNF-induced chemokine expression in fibroblast-like synoviocytes: autocrine role of type I interferon. Ann Rheum Dis 71(3):440–447
- 362. Yoshida H, Kimura A, Fukaya T et al (2012) Low dose CP-690,550 (tofacitinib), a pan-JAK inhibitor, accelerates the onset of experimental autoimmune encephalomyelitis by potentiating Th17 differentiation. Biochem Biophys Res Commun 418(2):234–240
- 363. Manshouri T, Quintas-Cardama A, Nussenzveig RH et al (2008) The JAK kinase inhibitor CP-690,550 suppresses the growth of human polycythemia vera cells carrying the JAK2V617F mutation. Cancer Sci 99(6):1265–1273
- 364. Siegelin MD, Raskett CM, Gilbert CA et al (2010) Sorafenib exerts anti-glioma activity in vitro and in vivo. Neurosci Lett 478(3):165–170
- 365. Couto JP, Almeida A, Daly L et al (2012) AZD1480 blocks growth and tumorigenesis of RET- activated thyroid cancer cell lines. PLoS One 7(10):e46869
- 366. Gu L, Talati P, Vogiatzi P et al (2014) Pharmacologic suppression of JAK1/2 by JAK1/2 inhibitor AZD1480 potently inhibits IL-6-induced experimental prostate cancer metastases formation. Mol Cancer Ther 13(5):1246–1258
- 367. Houghton PJ, Kurmasheva RT, Lyalin D et al (2014) Initial solid tumor testing (stage 1) of AZD1480, an inhibitor of Janus kinases 1 and 2 by the pediatric preclinical testing program. Pediatr Blood Cancer 61(11):1972–1979
- 368. Maenhout SK, Du Four S, Corthals J et al (2014) AZD1480 delays tumor growth in a melanoma model while enhancing the suppressive activity of myeloid-derived suppressor cells. Oncotarget 5(16):6801–6815
- 369. Scuto A, Krejci P, Popplewell L et al (2011) The novel JAK inhibitor AZD1480 blocks STAT3 and FGFR3 signaling, resulting in suppression of human myeloma cell growth and survival. Leukemia 25(3):538–550
- 370. Xin H, Herrmann A, Reckamp K et al (2011) Antiangiogenic and antimetastatic activity of JAK inhibitor AZD1480. Cancer Res 71(21):6601–6610
- 371. Amit-Vazina M, Shishodia S, Harris D et al (2005) Atiprimod blocks STAT3 phosphorylation and induces apoptosis in multiple myeloma cells. Br J Cancer 93(1):70–80
- 372. Choudhari SR, Khan MA, Harris G et al (2007) Deactivation of Akt and STAT3 signaling promotes apoptosis, inhibits proliferation, and enhances the sensitivity of hepatocellular carcinoma cells to an anticancer agent, Atiprimod. Mol Cancer Ther 6(1):112–121
- 373. Faderl S, Ferrajoli A, Harris D et al (2007) Atiprimod blocks phosphorylation of JAK-STAT and inhibits proliferation of acute myeloid leukemia (AML) cells. Leuk Res 31(1):91–95
- 374. Quintas-Cardama A, Manshouri T, Estrov Z et al (2011) Preclinical characterization of atiprimod, a novel JAK2 AND JAK3 inhibitor. Invest New Drugs 29(5):818–826
- 375. Hamasaki M, Hideshima T, Tassone P et al (2005) Azaspirane (N-N-diethyl-8,8-dipropyl-2azaspiro [4.5] decane-2-propanamine) inhibits human multiple myeloma cell growth in the bone marrow milieu in vitro and in vivo. Blood 105(11):4470–4476
- 376. Kim NH, Lee MY, Park SJ et al (2007) Auranofin blocks interleukin-6 signalling by inhibiting phosphorylation of JAK1 and STAT3. Immunology 122(4):607–614

- 377. Kim NH, Park HJ, Oh MK et al (2013) Antiproliferative effect of gold(I) compound auranofin through inhibition of STAT3 and telomerase activity in MDA-MB 231 human breast cancer cells. BMB Rep 46(1):59–64
- Madeira JM, Gibson DL, Kean WF et al (2012) The biological activity of auranofin: implications for novel treatment of diseases. Inflammopharmacology 20(6):297–306
- 379. Nakaya A, Sagawa M, Muto A et al (2011) The gold compound auranofin induces apoptosis of human multiple myeloma cells through both down-regulation of STAT3 and inhibition of NF-kappaB activity. Leuk Res 35(2):243–249
- 380. Kalogris C, Garulli C, Pietrella L et al (2014) Sanguinarine suppresses basal-like breast cancer growth through dihydrofolate reductase inhibition. Biochem Pharmacol 90(3):226–234
- 381. Sun M, Liu C, Nadiminty N et al (2012) Inhibition of Stat3 activation by sanguinarine suppresses prostate cancer cell growth and invasion. Prostate 72(1):82–89
- 382. Gu S, Yang XC, Xiang XY et al (2015) Sanguinarine-induced apoptosis in lung adenocarcinoma cells is dependent on reactive oxygen species production and endoplasmic reticulum stress. Oncol Rep 34(2):913–919
- 383. Blaskovich MA, Sun J, Cantor A et al (2003) Discovery of JSI-124 (cucurbitacin I), a selective Janus kinase/signal transducer and activator of transcription 3 signaling pathway inhibitor with potent antitumor activity against human and murine cancer cells in mice. Cancer Res 63(6):1270–1279
- Ishdorj G, Johnston JB, Gibson SB (2010) Inhibition of constitutive activation of STAT3 by curcurbitacin-I (JSI-124) sensitized human B-leukemia cells to apoptosis. Mol Cancer Ther 9(12):3302–3314
- 385. Aribi A, Gery S, Lee DH et al (2013) The triterpenoid cucurbitacin B augments the antiproliferative activity of chemotherapy in human breast cancer. Int J Cancer 132(12):2730–2737
- 386. Chan KT, Li K, Liu SL et al (2010) Cucurbitacin B inhibits STAT3 and the Raf/MEK/ERK pathway in leukemia cell line K562. Cancer Lett 289(1):46–52
- 387. Chan KT, Meng FY, Li Q et al (2010) Cucurbitacin B induces apoptosis and S phase cell cycle arrest in BEL-7402 human hepatocellular carcinoma cells and is effective via oral administration. Cancer Lett 294(1):118–124
- 388. Iwanski GB, Lee DH, En-Gal S et al (2010) Cucurbitacin B, a novel in vivo potentiator of gemcitabine with low toxicity in the treatment of pancreatic cancer. Br J Pharmacol 160(4):998–1007
- 389. Liu T, Peng H, Zhang M et al (2010) Cucurbitacin B, a small molecule inhibitor of the Stat3 signaling pathway, enhances the chemosensitivity of laryngeal squamous cell carcinoma cells to cisplatin. Eur J Pharmacol 641(1):15–22
- 390. Thoennissen NH, Iwanski GB, Doan NB et al (2009) Cucurbitacin B induces apoptosis by inhibition of the JAK/STAT pathway and potentiates antiproliferative effects of gemcitabine on pancreatic cancer cells. Cancer Res 69(14):5876–5884
- 391. Wakimoto N, Yin D, O'Kelly J et al (2008) Cucurbitacin B has a potent antiproliferative effect on breast cancer cells in vitro and in vivo. Cancer Sci 99(9):1793–1797
- 392. Zheng Q, Liu Y, Liu W et al (2014) Cucurbitacin B inhibits growth and induces apoptosis through the JAK2/STAT3 and MAPK pathways in SHSY5Y human neuroblastoma cells. Mol Med Rep 10(1):89–94
- 393. Dong Y, Lu B, Zhang X et al (2010) Cucurbitacin E, a tetracyclic triterpenes compound from Chinese medicine, inhibits tumor angiogenesis through VEGFR2-mediated Jak2-STAT3 signaling pathway. Carcinogenesis 31(12):2097–2104
- 394. Sun C, Zhang M, Shan X et al (2010) Inhibitory effect of cucurbitacin E on pancreatic cancer cells growth via STAT3 signaling. J Cancer Res Clin Oncol 136(4):603–610
- 395. Sun J, Blaskovich MA, Jove R et al (2005) Cucurbitacin Q: a selective STAT3 activation inhibitor with potent antitumor activity. Oncogene 24(20):3236–3245
- 396. Fan XX, Li N, Wu JL et al (2014) Celastrol induces apoptosis in gefitinib-resistant non-small cell lung cancer cells via caspases-dependent pathways and Hsp90 client protein degradation. Molecules 19(3):3508–3522

- 397. Kannaiyan R, Hay HS, Rajendran P et al (2011) Celastrol inhibits proliferation and induces chemosensitization through down-regulation of NF-kappaB and STAT3 regulated gene products in multiple myeloma cells. Br J Pharmacol 164(5):1506–1521
- 398. Rajendran P, Li F, Shanmugam MK et al (2012) Celastrol suppresses growth and induces apoptosis of human hepatocellular carcinoma through the modulation of STAT3/JAK2 signaling cascade in vitro and in vivo. Cancer Prev Res (Phila) 5(4):631–643
- 399. Subramaniam A, Shanmugam MK, Ong TH et al (2013) Emodin inhibits growth and induces apoptosis in an orthotopic hepatocellular carcinoma model by blocking activation of STAT3. Br J Pharmacol 170(4):807–821
- 400. Buettner R, Mesa T, Vultur A et al (2008) Inhibition of Src family kinases with dasatinib blocks migration and invasion of human melanoma cells. Mol Cancer Res 6(11):1766–1774
- 401. Michels S, Trautmann M, Sievers E et al (2013) SRC signaling is crucial in the growth of synovial sarcoma cells. Cancer Res 73(8):2518–2528
- 402. Jung JE, Kim HS, Lee CS et al (2007) Caffeic acid and its synthetic derivative CADPE suppress tumor angiogenesis by blocking STAT3-mediated VEGF expression in human renal carcinoma cells. Carcinogenesis 28(8):1780–1787
- 403. Choi D, Han J, Lee Y et al (2010) Caffeic acid phenethyl ester is a potent inhibitor of HIF prolyl hydroxylase: structural analysis and pharmacological implication. J Nutr Biochem 21(9):809–817
- 404. Won C, Lee CS, Lee JK et al (2010) CADPE suppresses cyclin D1 expression in hepatocellular carcinoma by blocking IL-6-induced STAT3 activation. Anticancer Res 30(2):481–488
- 405. Zheng Q, Han L, Dong Y et al (2014) JAK2/STAT3 targeted therapy suppresses tumor invasion via disruption of the EGFRvIII/JAK2/STAT3 axis and associated focal adhesion in EGFRvIII-expressing glioblastoma. Neuro Oncol 16(9):1229–1243
- 406. Horiguchi A, Oya M, Marumo K et al (2002) STAT3, but not ERKs, mediates the IL-6induced proliferation of renal cancer cells, ACHN and 769P. Kidney Int 61(3):926–938
- 407. Horiguchi A, Asano T, Kuroda K et al (2010) STAT3 inhibitor WP1066 as a novel therapeutic agent for renal cell carcinoma. Br J Cancer 102(11):1592–1599
- 408. Pardanani A, Hood J, Lasho T et al (2007) TG101209, a small molecule JAK2-selective kinase inhibitor potently inhibits myeloproliferative disorder-associated JAK2V617F and MPLW515L/K mutations. Leukemia 21(8):1658–1668
- 409. Ramakrishnan V, Kimlinger T, Haug J et al (2010) TG101209, a novel JAK2 inhibitor, has significant in vitro activity in multiple myeloma and displays preferential cytotoxicity for CD45+ myeloma cells. Am J Hematol 85(9):675–686
- 410. Lin L, Deangelis S, Foust E et al (2010) A novel small molecule inhibits STAT3 phosphorylation and DNA binding activity and exhibits potent growth suppressive activity in human cancer cells. Mol Cancer 9:217
- 411. Lin L, Hutzen B, Zuo M et al (2010) Novel STAT3 phosphorylation inhibitors exhibit potent growth-suppressive activity in pancreatic and breast cancer cells. Cancer Res 70(6):2445–2454
- 412. Haridas V, Nishimura G, Xu ZX et al (2009) Avicin D: a protein reactive plant isoprenoid dephosphorylates Stat 3 by regulating both kinase and phosphatase activities. PLoS One 4(5):e5578
- 413. Zhang C, Li B, Gaikwad AS et al (2008) Avicin D selectively induces apoptosis and downregulates p-STAT-3, bcl-2, and survivin in cutaneous T-cell lymphoma cells. J Invest Dermatol 128(11):2728–2735
- 414. Nam S, Wen W, Schroeder A et al (2013) Dual inhibition of Janus and Src family kinases by novel indirubin derivative blocks constitutively-activated Stat3 signaling associated with apoptosis of human pancreatic cancer cells. Mol Oncol 7(3):369–378
- 415. Liu L, Gaboriaud N, Vougogianopoulou K et al (2014) MLS-2384, a new 6-bromoindirubin derivative with dual JAK/Src kinase inhibitory activity, suppresses growth of diverse cancer cells. Cancer Biol Ther 15(2):178–184
- 416. Abubaker K, Luwor RB, Escalona R et al (2014) Targeted disruption of the JAK2/STAT3 pathway in combination with systemic administration of Paclitaxel inhibits the priming of ovarian cancer stem cells leading to a reduced tumor burden. Front Oncol 4:75

- 417. Abubaker K, Luwor RB, Zhu H et al (2014) Inhibition of the JAK2/STAT3 pathway in ovarian cancer results in the loss of cancer stem cell-like characteristics and a reduced tumor burden. BMC Cancer 14:317
- 418. Rhee YH, Jeong SJ, Lee HJ et al (2012) Inhibition of STAT3 signaling and induction of SHP1 mediate antiangiogenic and antitumor activities of ergosterol peroxide in U266 multiple myeloma cells. BMC Cancer 12:28
- 419. Aftimos PG, Wiedig M, Langouo Fontsa M et al (2013) Sequential use of protein kinase inhibitors potentiates their toxicity to melanoma cells: a rationale to combine targeted drugs based on protein expression inhibition profiles. Int J Oncol 43(3):919–926
- 420. Quaglino A, Schere-Levy C, Romorini L et al (2007) Mouse mammary tumors display Stat3 activation dependent on leukemia inhibitory factor signaling. Breast Cancer Res 9(5):R69
- 421. Li SQ, Cheuk AT, Shern JF et al (2013) Targeting wild-type and mutationally activated FGFR4 in rhabdomyosarcoma with the inhibitor ponatinib (AP24534). PLoS One 8(10):e76551
- 422. Sahu RP, Srivastava SK (2009) The role of STAT-3 in the induction of apoptosis in pancreatic cancer cells by benzyl isothiocyanate. J Natl Cancer Inst 101(3):176–193
- 423. Guo Y, Nemeth J, O'Brien C et al (2010) Effects of siltuximab on the IL-6-induced signaling pathway in ovarian cancer. Clin Cancer Res 16(23):5759–5769
- 424. Song L, Smith MA, Doshi P et al (2014) Antitumor efficacy of the anti-interleukin-6 (IL-6) antibody siltuximab in mouse xenograft models of lung cancer. J Thorac Oncol 9(7):974–982
- 425. Garbers C, Thaiss W, Jones GW et al (2011) Inhibition of classic signaling is a novel function of soluble glycoprotein 130 (sgp130), which is controlled by the ratio of interleukin 6 and soluble interleukin 6 receptor. J Biol Chem 286(50):42959–42970
- 426. Wan S, Zhao E, Kryczek I et al (2014) Tumor-associated macrophages produce interleukin 6 and signal via STAT3 to promote expansion of human hepatocellular carcinoma stem cells. Gastroenterology 147(6):1393–1404
- 427. Ung N, Putoczki TL, Stylli SS et al (2014) Anti-EGFR therapeutic efficacy correlates directly with inhibition of STAT3 activity. Cancer Biol Ther 15(5):623–632
- 428. Dokduang H, Yongvanit P, Namwat N et al (2016) Xanthohumol inhibits STAT3 activation pathway leading to growth suppression and apoptosis induction in human cholangiocarcinoma cells. Oncol Rep 35(4):2065–2072
- 429. Jiang W, Zhao S, Xu L et al (2015) The inhibitory effects of xanthohumol, a prenylated chalcone derived from hops, on cell growth and tumorigenesis in human pancreatic cancer. Biomed Pharmacother 73:40–47
- 430. Agrawal S, Febbraio M, Podrez E et al (2007) Signal transducer and activator of transcription 1 is required for optimal foam cell formation and atherosclerotic lesion development. Circulation 115(23):2939–2947
- 431. Gunning PT, Katt WP, Glenn M et al (2007) Isoform selective inhibition of STAT1 or STAT3 homo-dimerization via peptidomimetic probes: structural recognition of STAT SH2 domains. Bioorg Med Chem Lett 17(7):1875–1878
- 432. Shao H, Quintero AJ, Tweardy DJ (2001) Identification and characterization of cis elements in the STAT3 gene regulating STAT3 alpha and STAT3 beta messenger RNA splicing. Blood 98(13):3853–3856
- 433. Chen J, Bai L, Bernard D et al (2010) Structure-based design of conformationally constrained, cell-permeable STAT3 inhibitors. ACS Med Chem Lett 1(2):85–89
- 434. Fossey SL, Liao AT, McCleese JK et al (2009) Characterization of STAT3 activation and expression in canine and human osteosarcoma. BMC Cancer 9:81
- 435. Mencalha AL, Du Rocher B, Salles D et al (2010) LLL-3, a STAT3 inhibitor, represses BCR-ABL-positive cell proliferation, activates apoptosis and improves the effects of Imatinib mesylate. Cancer Chemother Pharmacol 65(6):1039–1046
- 436. Zhang X, Blaskovich MA, Forinash KD et al (2014) Withacnistin inhibits recruitment of STAT3 and STAT5 to growth factor and cytokine receptors and induces regression of breast tumours. Br J Cancer 111(5):894–902
- 437. Wu X, Xiao H, Wang R, Liu L, Li C, Lin J (2015) Persistent GP130/STAT3 signaling contributes to the resistance of doxorubicin, cisplatin, and MEK inhibitor in human rhabdomyosarcoma cells. Curr Cancer Drug Targets 16(7):631–638

- 438. Xiao H, Bid HK, Jou D et al (2015) A novel small molecular STAT3 inhibitor, LY5, inhibits cell viability, cell migration, and angiogenesis in medulloblastoma cells. J Biol Chem 290(6):3418–3429
- 439. Zhao C, Xiao H, Wu X et al (2015) Rational combination of MEK inhibitor and the STAT3 pathway modulator for the therapy in K-Ras mutated pancreatic and colon cancer cells. Oncotarget 6(16):14472–14487
- 440. Hillion J, Belton AM, Shah SN et al (2014) Nanoparticle delivery of inhibitory signal transducer and activator of transcription 3 G-quartet oligonucleotides blocks tumor growth in HMGA1 transgenic model of T-cell leukemia. Leuk Lymphoma 55(5):1194–1197
- 441. Jing N, Sha W, Li Y et al (2005) Rational drug design of G-quartet DNA as anti-cancer agents. Curr Pharm Des 11(22):2841–2854
- 442. Jing N, Zhu Q, Yuan P et al (2006) Targeting signal transducer and activator of transcription 3 with G-quartet oligonucleotides: a potential novel therapy for head and neck cancer. Mol Cancer Ther 5(2):279–286
- 443. Zhu Q, Jing N (2007) Computational study on mechanism of G-quartet oligonucleotide T40214 selectively targeting Stat3. J Comput Aided Mol Des 21(10-11):641–648
- 444. Klein JD, Sano D, Sen M et al (2014) STAT3 oligonucleotide inhibits tumor angiogenesis in preclinical models of squamous cell carcinoma. PLoS One 9(1):e81819
- 445. Xi S, Gooding WE, Grandis JR (2005) In vivo antitumor efficacy of STAT3 blockade using a transcription factor decoy approach: implications for cancer therapy. Oncogene 24(6): 970–979
- 446. Barton BE, Murphy TF, Shu P et al (2004) Novel single-stranded oligonucleotides that inhibit signal transducer and activator of transcription 3 induce apoptosis in vitro and in vivo in prostate cancer cell lines. Mol Cancer Ther 3(10):1183–1191
- 447. Selvendiran K, Ahmed S, Dayton A et al (2011) HO-3867, a curcumin analog, sensitizes cisplatin-resistant ovarian carcinoma, leading to therapeutic synergy through STAT3 inhibition. Cancer Biol Ther 12(9):837–845
- 448. Tierney BJ, McCann GA, Cohn DE et al (2012) HO-3867, a STAT3 inhibitor induces apoptosis by inactivation of STAT3 activity in BRCA1-mutated ovarian cancer cells. Cancer Biol Ther 13(9):766–775
- 449. Fang S, Liu B, Sun Q et al (2014) Platelet factor 4 inhibits IL-17/Stat3 pathway via upregulation of SOCS3 expression in melanoma. Inflammation 37(5):1744–1750
- 450. Liang P, Cheng SH, Cheng CK et al (2013) Platelet factor 4 induces cell apoptosis by inhibition of STAT3 via up-regulation of SOCS3 expression in multiple myeloma. Haematologica 98(2):288–295
- 451. Granato M, Gilardini Montani MS, Filardi M et al (2015) Capsaicin triggers immunogenic PEL cell death, stimulates DCs and reverts PEL-induced immune suppression. Oncotarget 6(30):29543–29554
- 452. Madoux F, Koenig M, Sessions H, Nelson E, Mercer BA, Cameron M, Roush W, Frank D, Hodder P (2009) Modulators of STAT Transcription Factors for the Targeted Therapy of Cancer (STAT3 Inhibitors). [updated 2011 Mar 25]. Probe Reports from the NIH Molecular Libraries Program [Internet]. Bethesda (MD) (2010) National Center for Biotechnology Information (US). Available from http://www.ncbi.nlm.nih.gov/books/NBK56232/
- 453. Ferrajoli A, Faderl S, Van Q et al (2007) WP1066 disrupts Janus kinase-2 and induces caspase-dependent apoptosis in acute myelogenous leukemia cells. Cancer Res 67(23):11291–11299
- 454. Xue ZJ, Shen L, Wang ZY et al (2014) STAT3 inhibitor WP1066 as a novel therapeutic agent for bCCI neuropathic pain rats. Brain Res 1583:79–88
- 455. Wong AL, Soo RA, Tan DS et al (2015) Phase I and biomarker study of OPB-51602, a novel signal transducer and activator of transcription (STAT) 3 inhibitor, in patients with refractory solid malignancies. Ann Oncol 26(5):998–1005