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SUMMARY

Catabolic conditions like chronic kidney disease
(CKD) cause loss of muscle mass by unclear mecha-
nisms. In muscle biopsies from CKD patients, we
found activated Stat3 (p-Stat3) and hypothesized
that p-Stat3 initiates muscle wasting. We created
mice with muscle-specific knockout (KO) that pre-
vents activation of Stat3. In these mice, losses of
body and muscle weights were suppressed in
models with CKD or acute diabetes. A small-mole-
cule that inhibits Stat3 activation produced similar
responses, suggesting a potential for translation
strategies. Using CCAAT/enhancer-binding protein
d (C/EBPd) KO mice and C2C12 myotubes with
knockdown of C/EBPd or myostatin, we determined
that p-Stat3 initiates muscle wasting via C/EBPd,
stimulating myostatin, a negative muscle growth
regulator. C/EBPd KO also improved survival of
CKD mice. We verified that p-Stat3, C/EBPd, and
myostatin were increased in muscles of CKD
patients. The pathway from p-Stat3 to C/EBPd to
myostatin and muscle wasting could identify thera-
peutic targets that prevent muscle wasting.

INTRODUCTION

Muscle wasting is a debilitating complication of catabolic condi-

tions, including chronic kidney disease (CKD), diabetes, cancer,

or serious infections. Unfortunately, there are few reliable strate-

gies that block the loss of muscle protein initiated by these con-

ditions. Previously, we found that myostatin, a negative regulator

of muscle growth, is increased in muscles of mice with CKD, and

when we inhibited myostatin with a humanized myostatin pepti-

body, CKD-induced muscle wasting was blocked (Zhang et al.,

2011). A similar conclusion was reached in studies of mouse

models of cancer cachexia (Zhou et al., 2010). In exploring why

blocking myostatin is beneficial for muscle metabolism, we
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found that its inhibition reduced circulating levels of interleukin-

6 (IL-6) and tumor necrosis factor a (TNF-a), suggesting that

there is a link between inflammation and muscle wasting as

reported in clinical studies (Carrero et al., 2008; Hung et al.,

2011). The evidence that inflammation stimulates muscle

wasting includes reports that infusion of TNF-a, IL-6, IL-1b, or

interferon (IFN)-g into rodents results in muscle wasting, while

neutralization of cytokines using genetic or pharmacological

approaches attenuates muscle wasting (Cheung et al., 2010).

For example, we treated rodents with a constant infusion of

angiotensin II (AngII), which caused muscle wasting plus

increased circulating levels of IL-6 and increased expression of

suppressor of cytokine signaling 3 (SOCS3), leading to sup-

pressed insulin/insulin-like growth factor 1 (IGF-1) signaling.

Knockout IL-6 from mice suppressed AngII-induced muscle

wasting (Zhang et al., 2009; Rui et al., 2001; Rui et al., 2002).

Responses to IL-6 or IFN-g involve stimulation of intracellular

signaling pathways, including activation of Janus protein tyro-

sine kinases (JAKs). Subsequently, JAKsmediate tyrosine phos-

phorylation of signal transducer and activator of transcription

(STAT) factors, followed by their dimerization, nuclear transloca-

tion, and activation of target genes (Horvath, 2004). Among the

seven members of the STAT family, Stat3 is the major member

that is activated by the IL-6 family of cytokines (Hirano et al.,

1997; Kishimoto et al., 1994). Recently, Bonetto et al. (2011)

reported the results of a microarray analysis of muscles from

mice with cancer-induced cachexia. Components of 20

signaling pathways were upregulated, including IL-6, Stat3,

JAK-STAT, and SOCS3 complement and coagulation pathways

(Bonetto et al., 2011). Although this suggests that the Stat3

pathway could be linked to loss of muscle mass, a pathway

from Stat3 to muscle wasting has not been reported.

A potential target of activated Stat3 is CCAAT/enhancer-bind-

ing protein d (C/EBPd). The C/EBP transcription factors (C/EBPa,

-b, -g, -d, -u, and -z) are expressed in several tissues and act to

regulate inflammatory andmetabolic processes (Ramji andFoka,

2002). C/EBPb or -d can stimulate intracellular signaling in hepa-

tocytes or inflammatory cells (Poli, 1998; Akira et al., 1990; Alonzi

et al., 1997) and in muscles of mice responding to an excess

of glucocorticoids, the expression and binding activity of C/

EBPb and -d are increased (Penner et al., 2002; Yang et al., 2005).
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Figure 1. Inflammatory Cytokines and

p-Stat3 Are Elevated in Muscles of Patients

with CKD

(A) Immunostaining of muscle sections for IL-6 and

TNF-a (brown color) from biopsies of age- and

gender-matched, healthy control subjects (left

panel) and CKD patients (middle panel). Staining

quantification is calculated as the percentage of

muscle fibers that are immunostained (right panel;

n = 3 control subjects; n = 4 CKD patients; ruler =

50 mm).

(B) Representative western blots for p-Stat3 in

control subjects and CKD patients (upper panel)

and the ratio of the intensity of p-Stat3 to total

Stat3 (lower panel) (n = 6 control subjects; n = 6

CKD patients).

(C) Muscle sections from control subjects and

CKD patients were immunostained for p-Stat3

(upper panel). Brown nuclei are p-Stat3 positive

(arrows). Percentage of p-Stat3-positive nuclei in a

total of 550 nuclei (lower panel; n = 4 control

subjects; n = 6 CKD patients). Values are means ±

SEM. *p < 0.05 versus control subjects. See also

Figure S1 and Table S1.
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A potential mechanism that includes C/EBPd involves

increased myostatin expression because the myostatin

promoter contains recognition sites for members of the C/EBP

family of transcription factors (Ma et al., 2001; Allen et al.,

2010). In the present report, we have uncovered an intracellular

signaling pathway in cultured myotubes that could bridge the

gaps between p-Stat3 and myostatin and loss of muscle mass.

To examine if the pathway was operative in vivo, we studied

how two catabolic conditions, CKD or streptozotocin-induced

acute diabetes, affected muscle metabolism in a muscle-spe-

cific Stat3 knockout (KO) mouse. We also tested whether a

small-molecule inhibitor of Stat3 activation would correctmuscle

wasting. Interruption of Stat3 improved muscle metabolism and

strength in mice with CKD. We also found evidence for this cata-

bolic pathway in muscle biopsies from patients with CKD.

RESULTS

Muscle Biopsies of Patients with CKD Reveal
Inflammation and Stat3 Activation
To address the mechanisms underlying muscle wasting, we

studied 18 CKD patients scheduled for peritoneal dialysis cath-

eter insertion and a control group of 16 age- and gender-

matched healthy subjects. All subjects led a sedentary lifestyle.

In the 18 CKD patients, the blood urea nitrogen (BUN) and

serum creatinine were increased 4- and �8-fold, respectively,

over control subjects (Table S1 available online). All CKD pa-

tients experienced unintentional weight loss in the 3 months

before muscle biopsies were obtained. In CKD patients, the

mean estimated protein and calorie intakes were 0.9 g/kg and
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28 kcal/kg, respectively, compared to

�1 g/kg and 30–32 kcal/kg, respectively,

in control healthy subjects (from diet di-

aries). Even though these intakes of pro-

tein and calorie exceed the recommen-
ded daily allowance (RDA), 13 of the 18 patients were

malnourished, signified by a subjective global assessment level

of >2, and serum albumin was low in 11 patients (<3.8 g/100 ml)

(Fouque et al., 2008). Even though the body mass index was low

(<23 kg/m2) in only 4 subjects, all patients had evidence of pro-

tein losses; there was a marked reduction in muscle fiber cross-

sectional area (CSA) (CKD patients median = 1,003 mm2, range

717–1,601; control median = 1,873 mm2, range 1,100–3,389; p <

0.003 Mann-Whitney). We also calculated fat-free mass (FFM)

from skinfold thickness (Avesani et al., 2004). Over 3 months,

the FFM in CKD patients declined from 45.9 ± 2 kg to 44.1 ±

2 kg (p < 0.05). Regarding drugs that might influence muscle

metabolism, no patient was receiving steroids, but 14 patients

were treated with statins; these patients did not have signs of

myopathy. Characteristics of the CKD patients and control sub-

jects are shown in Table S1. Patients were treated with diuretic

(furosemide; all patients) at different dosages, lisinopril or dox-

azosin (17 patients), proton-pump inhibitors (14 patients),

platelet aggregation inhibitors (14 patients), insulin therapy (4

patients), oral anticoagulant therapy (1 patient), and erythropoi-

etin (10 patients). Diabetes was well controlled, with hemoglobin

A1c values < 6.5% and fasting plasma glucose levels < 110 mg/

dl. There were increased levels of inflammatory markers in CKD

patients, including circulating C-reactive protein (CRP; control

[3.21 ± 0.22 mg/dl] versus CKD [10.46 ± 2.98 mg/dl]; p <

0.05) and fibrinogen (control [291 ± 31.7 mg/dl] versus CKD

[579 ± 37.5 mg/dl]; p < 0.005) (Table S1). There were also

increased levels of IL-6 and TNF-a in muscle biopsies

compared to results from control subjects (Figure 1A). Finally,

TNF-a messenger RNA (mRNA) was increased (Figure S1)
eptember 3, 2013 ª2013 Elsevier Inc. 369



Figure 2. Muscle-Specific Stat3 Knockout

in Mice Suppresses CKD or Streptozoto-

cin-Induced Muscle Wasting

(A) Density of p-Stat3 corrected for total Stat3 in

lysates of gastrocnemius muscles (upper panel;

n = 5 mice/group; *p < 0.05 versus sham control

mice). Also shown are representative western

blots of p-Stat3 (lower panel).

(B) Changes in body weights of Stat3 KO and

Stat3flox/flox control mice over 5 weeks following

creation of CKD (n = 10 pairs of mice; *p < 0.05

versus Stat3flox/flox).

(C and D) Average weights of mixed fiber tibialis

anterior (TA) (C) and gastrocnemius (D) muscles

(n = 10 mice/group).

(E and F) Extensor digitorum longus (EDL) muscles

from sham or CKD mice and either Stat3flox/flox or

Stat3 KO were isolated. Rates of protein synthesis

(E) and protein degradation (F) weremeasured (n =

20 EDL muscles from 10 mice/group).

(G) Muscle force of each mouse used in Figure 2B

was measured on four consecutive days. The

averagemuscle force (in newtons) is shown (n = 10

mice/group).

(H) Representative western blots of p-Stat3 in

lysates of gastrocnemius muscles of acutely dia-

betic (STZ) and control mice. Bar graph shows the

densities of p-Stat3 corrected for that of Stat3 (n =

10 mice/group; *p < 0.05 versus CTRL mice).

(I and J) Average weights of the mixed fiber tibialis

anterior (TA) (I) and gastrocnemius (J) muscles

from both legs (n = 10 mice/group; *p < 0.05

versus control Stat3flox/flox). Values are means ±

SEM. See also Figure S2.
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and, as noted previously, so was IL-6 mRNA (Verzola et al.,

2011).

Activated Stat3 protein was significantly increased in muscles

of CKD patients versus healthy subjects (Figure 1B); p-Stat3 was

principally located in nuclei of biopsies, as �40% of nuclei in

muscle biopsies of CKDpatients were positive for p-Stat3 versus

�20% in healthy subjects (Figure 1C). Thus, significant increases

in the expressions of inflammatory cytokines, IL-6 and TNF-a,

were associatedwith Stat3 activation inmuscles of CKDpatients

who expressed evidence of muscle wasting.

Muscle-Specific Stat3 KO Suppresses Loss of Muscle,
Despite CKD or Type 1 Diabetes
In gastrocnemius muscles of mice with CKD, the level of p-Stat3

was increased compared to results inmuscles of pair-fed, sham-
370 Cell Metabolism 18, 368–379, September 3, 2013 ª2013 Elsevier Inc.
operated, control mice (Figure 2A). To

explore if the activation of Stat3 triggers

muscle wasting in vivo, we studied mice

with muscle-specific deletion of the

Stat3 tyrosine phosphorylation site

(Stat3 KO) compared to results in control

Stat3flox/flox mice (Takeda et al., 1998).

Mice with muscle-specific Stat3 KO did

not differ from control mice in terms of

development, food intake (data not

shown), and body weight (Figure S2A).
However, with CKD, body weights of Stat3 KO mice increased

versus results in pair-fed Stat3flox/flox mice with CKD (Figure 2B).

The gain in weight was due in part to increased muscle mass;

after 5 weeks of CKD, the weights of gastrocnemius and tibialis

anterior muscles were significantly greater than muscles from

Stat3flox/flox mice (Figures 2C and 2D). To determine why loss

of muscle mass was blunted in Stat3 KO mice with CKD, we

measured rates of muscle protein synthesis and degradation

and found a significant improvement in both indices of protein

metabolism in Stat3 KOmicewith CKD (Figures 2E and 2F). Like-

wise, there was an increase in grip strength of Stat3 KO mice

versus Stat3flox/flox mice (Figure 2G).

Muscle atrophy in several catabolic conditions is characterized

as an increase in circulating inflammatory cytokines, impaired

insulin/IGF-1 signaling, and an increase in muscle protein



Figure 3. A Small-Molecule Inhibitor of

Stat3 Activation, C188-9, Blocks CKD-

Induced Muscle Wasting

(A) Sham or CKDmicewere treated with C188-9 or

D5W (diluent) for 14 days. Representative western

blots of p-Stat3, Stat3, andGAPDH from lysates of

gastrocnemius muscles are shown (n = 8 mice/

group).

(B) Differences in body weights of pair-fed, sham,

or CKD mice treated with C188-9 or D5W at

baseline and after 7 or 14 days of treatment (*p <

0.05 versus D5W sham).

(C and D) Average weights of mixed fiber

gastrocnemius (C) and tibialis anterior (TA) (D)

muscles from both legs (n = 7 mice/group).

(E) Cryosections of TA muscles were immuno-

stained with anti-laminin to identify the muscle

basement membrane. The myofiber areas were

measured, and the myofiber size distribution was

calculated from the areas of �500 myofibers

assessed by an observer blinded to treatment

group (n = 4 pairs of mice).

(F) Muscle force of each mouse studied in Fig-

ure 3C was measured on four consecutive days

(Experimental Procedures; n = 7 mice/group).

(G and H) At 2 weeks of C188-9 or D5W treatment,

protein synthesis (G) and degradation (H) were

measured (n = 8 pairs of mice; *p < 0.05 versus

D5W). Values are means ± SEM.
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degradation via the ubiquitin-proteasome system (UPS) (Zhang

et al., 2011; Lecker et al., 2004). To determine if results present

in mice with CKD occur in another model of muscle wasting, we

studied streptozotocin-treated, acutely diabetic mice (Price

et al., 1996). Therewasan increase inp-Stat3plushighcirculating

andmuscle levels of IL-6 in acutely diabeticmice (Figures 2H and

S2B). IL-6mRNA inmuscles of streptozotocin (STZ)-treatedmice

was increased 2-fold over control mice (data not shown). Stat3

KO mice expressed a slower decrease in body weight versus

results in acutely diabetic Stat3flox/flox mice (Figure S2C). The

slower loss of body weight in acutely diabetic Stat3 KO mice

was associatedwith a greatermass of gastrocnemius and tibialis

anterior muscles versus results in Stat3flox/flox mice (Figures 2I

and 2J). In the absence of CKD- or diabetes-induced catabolism,

muscle-specificStat3KOdid not significantly affect bodyweight,

muscle mass, protein metabolism, or grip strength compared to

results in Stat3flox/flox mice (Figure 2). Thus, p-Stat3 can trigger

muscle wasting in certain catabolic conditions.

Inhibition of Stat3 Activation Blocks CKD-Induced
Muscle Wasting
To determine if a translational strategy might be developed to

interfere with muscle wasting when Stat3 is activated, we evalu-

ated C188-9, a small-molecule inhibitor of Stat3 that targets the

phosphotyrosyl (pY) peptide binding pocket within the Src

homology (SH) 2 domain of Stat3, thereby blocking Stat3 recruit-

ment to activated receptors, its phosphorylation on tyrosine, and
Cell Metabolism 18, 368–379, S
tail-to-tail dimerization (Xu et al., 2009;

Redell et al., 2011). After 2 weeks of

CKD, mice were paired for their BUN

and body weights and injected with either
C188-9 or the diluent, 5%dextrose in water (D5W). C188-9 treat-

ment decreased the level of p-Stat3 in muscle without affecting

levels of total Stat3 (Figure 3A). Consistent with results from

Stat3 KO mice with CKD, the body weights of CKD mice treated

with the Stat3 inhibitor were significantly greater than weights of

the control, CKD mice (Figure 3B). After 14 days of C188-9, we

found that the increase in body weight included more muscle,

as the weights of gastrocnemius and tibialis anterior muscles

were greater (Figures 3C and 3D). The increase in muscle

mass was confirmed by an analysis of the size distribution of

myofibers in muscles of CKD mice treated with C188-9 (Fig-

ure 3E). This improvement in muscle mass was accompanied

by improved grip strength in CKD mice treated with C188-9

(Figure 3F). Consistent with results from the Stat3 KO mice,

blocking Stat3 with C188-9 in control, wild-type mice did not

significantly affect their food intake (data not shown), body

weight, muscle mass, or grip strength (Figures 3B–3D and 3F).

The mechanism underlying the C188-9-induced increase in

muscle weight included improved muscle protein synthesis

and decreased protein degradation (Figures 3G and 3H). We

conclude that inhibiting Stat3 activation suppresses CKD-

induced loss of both muscle mass and strength.

In C2C12 Myotubes, Stat3 Activation Increases the
Expression of C/EBPd and Myostatin
We evaluated the signaling pathway from activated Stat3 to

muscle wasting. We studied myostatin because its expression
eptember 3, 2013 ª2013 Elsevier Inc. 371



Figure 4. Stat3 Activation in C2C12 Myo-

tubes Increases the Expression of C/EBPd

and Myostatin

(A) Representative western blots from C2C12

myotubes treated with IL-6 (100 ng/ml) for

different times (left panel). Fold changes in the

densities of proteins corrected for GAPDH at

different times was calculated from values at time

zero (right panel), n = 3 repeats; *p < 0.05 versus

time zero.

(B) C2C12 myotubes were infected with a lenti-

virus expressing constitutively active Stat3

(Stat3C-GFP). A representative western blot for

the indicated proteins is shown.

(C) C2C12 myotubes were treated with or without

C188-9 for 2 hr before adding IL-6 (100 ng/ml) for

24 hr. A representative western blot for the indi-

cated proteins is shown.

(D) C2C12 myoblasts were cotransfected with

a plasmid expressing the C/EBPd promoter-

driven luciferase and a plasmid expressing

Renilla luciferase. A lentivirus expressing Stat3C-

GFP was also transfected into the cell myo-

blasts. The cells were treated with or without

IL-6. Dual luciferase activity was measured (n = 3

repeats; *p < 0.05 versus respective GFP

control).

(E) C2C12 myoblasts were transfected with

control siRNA or C/EBPd siRNA and, after differ-

entiation to myotubes, were treated with or

without IL-6. Representative western blots of

Stat3, C/EBPd, and myostatin are shown.

(F) C2C12 myoblasts were cotransfected with a

plasmid expressing the myostatin promoter-

driven luciferase plus plasmids (cDNA3 control,

Stat3C, C/EBPd, C/EBPd siRNA, or Stat3C plus C/

EBPd siRNA) and treated with or without IL-6.

Luciferase activity was measured (n = 3 repeats;

*p < 0.05 versus cDNA3 CTRL).

(G) C2C12 myoblasts were transfected with

lentivirus expressing a siRNA to myostatin. Myo-

blasts exhibiting suppression of myostatin were

selected and then differentiated after they had

been transfected with plasmids expressing

Stat3C, C/EBPd, or Stat3C plus C/EBPd. In these

cells, we measured protein degradation (upper panel; n = 6 repeats, #p < 0.05 versus GFP control, *p < 0.05 versus siRNA CTRL). Western blots of proteins

expressed in response to transfections were shown in Figure S3E. Values are means ± SEM. See also Figure S3.
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is increased in muscles of CKD mice, and we have found that

myostatin inhibition overcomes the decrease in protein synthesis

and the increase in protein degradation stimulated by CKD

(Zhang et al., 2011). To determine how CKD leads to myostatin

expression, we evaluated C/EBPd because the myostatin pro-

moter has several C/EBP recognition sites (Ma et al., 2001)

and Stat3 can regulate C/EBPd, at least in epithelial cells (Zhang

et al., 2007). First, we treated C2C12 myotubes with IL-6 to

activate Stat3. After 3 hr, there was an increase in the C/EBPd

protein in myotubes responding to activated Stat3. After 24 hr,

myostatin protein was increased, and changes in mRNAs were

consistent with the western blotting results (Figures 4A, S3A,

and S3B). These results show that p-Stat3, C/EBPd, and myo-

statin were activated sequentially.

Next, we infected C2C12 myotubes with a lentivirus that

expresses a constitutively active Stat3-GFP (Stat3C-GFP). The

higher level of p-Stat3 expression resulted in an increase in
372 Cell Metabolism 18, 368–379, September 3, 2013 ª2013 Elsevie
C/EBPd and myostatin plus a decrease in p-Akt and myosin

heavy chain (MHC) as compared to results from myotubes ex-

pressing GFP alone (Figure 4B). Other evidence that Stat3 acti-

vation stimulates myostatin expression was uncovered when

we used the inhibitor of Stat3 (C188-9) to block p-Stat3 in

C2C12 myotubes. After 24 hr of exposure to IL-6, there was an

increase in p-Stat3, C/EBPd, and myostatin, and C188-9

blocked these responses. The inhibitor also increased p-Akt

(Figure 4C) and suppressed C/EBPd and myostatin mRNAs in

IL-6-treated C2C12 myotubes (Figure S3C). Notably, C188-9

not only suppressed p-Stat3, but also prevented the decrease

in myotube size induced by exposure to IL-6 (Figure S3D).

To assess whether Stat3 affects C/EBPd expression, we

cotransfected C2C12 myoblasts with a plasmid expressing a

C/EBPd promoter-driven luciferase plus a lentivirus expressing

the constitutively active Stat3C-GFP. Overexpression of Stat3C

increased C/EBPd promoter activity compared to that in
r Inc.



Figure 5. Stat3 Activation in Mouse Mus-

cles Increases C/EBPd and Myostatin

Expression

(A) Representative western blots of the indicated

proteins from lysates of gastrocnemius muscles of

control (Stat3flox/flox) or Stat3 KO sham or CKD

mice.

(B and C) mRNAs of myostatin (B) and C/EBPd (C)

in muscles of sham or CKD mice analyzed by

RT-PCR (n = 4 mice/group; *p < 0.05 versus

Stat3flox/flox sham).

(D) Representative western blots of the indicated

proteins in lysates of gastrocnemius muscles of

STZ versus WT control mice (n = 5 pairs).

(E) Sham or CKDmice were treated with C188-9 or

D5W (diluent) for 14 days. Representative western

blots of indicated proteins from lysates of

gastrocnemius muscles are shown (n = 8 mice/

group).

(F and G) mRNA levels of myostatin (F) and

C/EBPd (G) analyzed byRT-PCR and corrected for

GAPDH (n = 3 mice/group: wild-type mice without

CKD; sham mice treated with C188-9 or D5W;

mice with CKD treated with C188-9 or D5W;

*p < 0.05 versus WT non-CKD). Values are

means ± SEM.
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lentivirus expressing GFP control; addition of IL-6 stimulated C/

EBPd promoter activity in myoblasts (Figure 4D).

To identify whether p-Stat3 acts through C/EBPd to stimulate

myostatin, we knocked down C/EBPd using small interfering

RNA (siRNA). In this case, the IL-6-induced increase inmyostatin

expression was blocked when C/EBPd was suppressed, even

though p-Stat3 was increased (Figure 4E). Next, we cotrans-

fected C2C12 myoblasts with a plasmid expressing myostatin

promoter-driven luciferase plus one of the following: (1) a

plasmid expressing Stat3C; (2) a plasmid expressing C/EBPd;

(3) C/EBPd siRNA oligonucleotide; or (4) a plasmid expressing

Stat3C and the C/EBPd siRNA. Constitutively active Stat3C

moderately increased myostatin promoter activity, while trans-

fection with C/EBPd alone significantly increased myostatin pro-

moter activity. Knockdown of C/EBPd blocked myostatin pro-

moter activity that was stimulated by IL-6 or Stat3C (Figure 4F).

We also tranfected C2C12 myoblasts with a lentivirus that

expresses myostatin siRNA; it decreased myostatin expression

and reduced protein degradation even in cells expressing Stat3C

or C/EBPd (Figures 4G and S3E). Thus, the Stat3 to C/EBPd to
Cell Metabolism 18, 368–379, S
myostatin pathway provides a mecha-

nism causing loss of muscle mass.

CKD-Induced Muscle Wasting
In Vivo Is Mediated by a Pathway
from p-Stat3 to C/EBPd to
Myostatin
In muscles of CKD or acutely diabetic

mice, there were increases in the expres-

sion of p-Stat3, C/EBPd, and myostatin

(Figures 5A and 5D). The C/EBPd and

myostatin proteins in muscles of Stat3

KO mice with CKD were significantly
below responses in muscles of Stat3flox/flox mice with CKD.

Expression of p-Smad2 and p-Smad3, the downstream signal

of myostatin, was also increased in muscles of CKD mice,

consistent with reports that p-Smad2 and p-Smad3 mediates

myostatin-induced muscle atrophy (Trendelenburg et al.,

2009). We note that the increase in p-Smad2 and p-Smad3 in

muscle of mice with CKD was sharply decreased in muscles of

Stat3 KO mice with CKD. This suggests that in CKD, Stat3 acti-

vation results in myostatin expression and activation of its down-

stream signaling pathway (Figure 5A). Similar results were found

when we examined C/EBPd andmyostatin mRNAs in muscles of

the Stat3 KO mice with CKD; levels in Stat3 KO mice with CKD

were below those of control, Stat3flox/flox mice with CKD (Figures

5B and 5C). We also note that activated Stat3 in muscles of CKD

mice was not completely blocked by muscle-specific KO of

Stat3 when compared to p-Stat3 in muscles of non-CKD mice.

Possibly, the remaining p-Stat3 in muscle lysates of Stat3 KO

mice could reflect p-Stat3 in blood cells, blood vessels, or the in-

terstitium since the results were obtained from western blots of

gastrocnemius muscle lysates.
eptember 3, 2013 ª2013 Elsevier Inc. 373
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When we treated mice with CKD using the inhibitor of Stat3,

both C/EBPd and myostatin proteins were decreased, and the

CKD-induced phosphorylation of p-Smad2 and p-Smad3 was

blocked. In this case, the Akt phosphorylation was higher (Fig-

ure 5E). Notably, C188-9 suppressed the CKD-stimulated

mRNA expressions of C/EBPd and myostatin (Figures 5F and

5G). In control mice without CKD, muscle-specific Stat3 KO or

C188-9 treatment did not change either C/EBPd or myostatin

mRNAs or proteins in muscle.

To demonstrate a link from p-Stat3 to C/EBPd to myostatin

in vivo, we studied C/EBPd-deficient mice that have normal

embryonic development, are fertile, and do not display overt

developmental or physiological defects (Sterneck et al., 1998).

We created CKD in heterozygous and homozygous C/EBPd

KO and wild-type mice and fed the different groups the same

amount of chow as eaten by wild-type mice with CKD. In homo-

zygous C/EBPd KO mice with CKD, the losses of body and

muscle weights were prevented. There was also improved sur-

vival in pair fed, homozygousC/EBPdKOmicewith CKD (Figures

6A–6C). Despite the increase in p-Stat3 in muscles of homo- and

heterozygous C/EBPd KO or wild-typemice with CKD, there was

no increase in expression of myostatin in mice with homozygous

C/EBPd KO (Figure 6D). The degrees of survival and myostatin

expression in muscles of heterozygous C/EBPd KO mice were

intermediate between homozygous KO and wild-type mice.

To examine whether Stat3-induced muscle wasting in vivo is

mediated by myostatin, we injected a lentivirus expressing

constitutively active Stat3-GFP (Stat3C-GFP) into the right hin-

dlimb of newborn mice. The injection was repeated 2 weeks

later. At the same time, a lentivirus expressing GFP was injected

into the left hindlimb (control). At 2 weeks after the second injec-

tion of lentiviruses into hindlimbs, one group ofmicewas injected

with anti-myostatin peptibody for 2 weeks and compared to

mice injected with PBS (Figure 6E). In mice treated with PBS,

the overexpression of Stat3C induced a significant reduction in

myofiber sizes versus results in the contralateral hindlimb, which

was injected with GFP (Figure 6F; compare bar 2 with bar 1).

Notably, myostatin inhibition slightly increased the sizes of myo-

fibers inmuscles treated with GFP alone (Figure 6F; compare bar

3 with bar 1). Myostatin inhibition also eliminated the myofiber

atrophy induced by Stat3C: there was no difference in myofiber

sizes in muscles expressing GFP versus Stat3C-GFP (Figure 6F;

compare bar 3 with bar 4). Next, we immunostained muscle

cross-sections with p-Smad2 and p-Smad3 and found high

levels of p-Smad2 and p-Smad3 in myofibers overexpressing

Stat3C-GFP. Similar to results in CKDmice with muscle-specific

Stat3 KO or following treatment with the Stat3 inhibitor, the

increase in p-Smad2 and p-Smad3 was blocked by the anti-

myostatin peptibody (Figures 6E, 6G, and S4), consistent with

a catabolic pathway from p-Stat3 to C/EBPd to myostatin-

induced muscle protein loss.

In CKD Patients, There Is Evidence for the p-Stat3 to
C/EBPd to Myostatin Pathway in Muscle
Muscle biopsies from patients with advanced CKD had signifi-

cantly decreased sizes of myofibers and levels of p-Akt (Table

S1; Figure 7A). There was, however, increased mRNA and pro-

tein levels of p-Stat3, C/EBPd, and myostatin in muscles of

CKD patients (Figures 7B–7D).
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DISCUSSION

Many catabolic conditions, including CKD, diabetes, cancer,

and serious infections, are complicated by progressive muscle

wasting, which decreases the quality of life and raises the risk

of morbidity and mortality. The complications of CKD (excess

angiotensin II, glucocorticoids, acidosis, and impaired insulin/

IGF-1 signaling) stimulate protein degradation and loss of mus-

cle mass. CKD also increases inflammatory markers, including

IL-6, TNF-a, and CRP, which can activate p-Stat3 (Zhang

et al., 2009, 2011; May et al., 1987; Hu et al., 2009). Still, the

molecular mechanisms causing muscle loss are poorly under-

stood, which hampers the development of drug or other treat-

ment strategies. In the present experiments, we have identified

that activated Stat3 triggers a pathway from p-Stat3 to myosta-

tin, which causes the progressivemuscle wasting that is induced

by CKD or acute diabetes.

Evidence for the p-Stat3-dependent pathway that initiates

loss of muscle mass was obtained in five experimental models:

cultured C2C12 myotubes; muscle-specific p-Stat3 KO mice;

mice treated with a small molecule that inhibits Stat3 activation;

C/EBPdKOmice; andmuscle biopsies of patients with CKD. Our

results show that CKD activates Stat3, leading to increased

expression of C/EBPd and transcriptional regulation ofmyostatin

expression. When this pathway is activated, there is a decrease

in p-Akt, which we have shown will activate caspase-3 and the

ubiquitin-proteasome system (UPS) to degrade muscle protein

(Zhang et al., 2011; Du et al., 2004;Wang et al., 2010). Our results

demonstrate that: (1) CKD or acute diabetes activates Stat3 in

muscle, causing loss of muscle mass; (2) targeted knockout of

Stat3 in muscle or pharmacologic inhibition of Stat3 suppresses

the muscle wasting that is induced by CKD or acute diabetes,

which leads to an increase in muscle protein synthesis and a

decrease in protein degradation with improvement in muscle

mass and grip strength; and (3) C/EBPd is a mediator of the

pathway from p-Stat3 to myostatin because its KO inhibits

myostatin expression and suppresses muscle wasting. In addi-

tion, C/EBPd KO was associated with an improvement in sur-

vival. In muscle biopsies of patients with CKD, there are similar

changes in the levels of the same mediators, suggesting that

the results could form the basis for developing translation strate-

gies to suppress muscle wasting in CKD.

Presently, there are no clinically available drugs that directly

target Stat3. We initiated a small-molecule, drug development

program that targets the pY-peptide binding site within the

Stat3 SH2 domain and identified C188 (Xu et al., 2009); further

hit-to-led development yielded C188-9 (Redell et al., 2011).

C188-9 blocks Stat3 binding to its pY-peptide ligand with Ki =

136 nM; C188-9 does not inhibit upstream JAK or Src kinases

(Redell et al., 2011) and is well tolerated in mice even after pro-

longed administration. Results obtained using C188-9 in our

mouse CKD cachexia model suggest that it has promise for

development into a drug that can be administered safely to treat

or prevent cachexia in patients.

HowdoesC188-9 influencemuscle proteinwasting?One pos-

sibility is suggested by the findings that injection of IL-6 into ro-

dents activates Stat3 and stimulates muscle proteolysis

(Goodman, 1994). Indeed, we found increased IL-6 in muscles

of CKD patients and in STZ-induced acute diabetic mice. The
r Inc.



Figure 6. C/EBPd and Myostatin Mediate CKD or Stat3-Induced Muscle Wasting

(A) Bodyweights of wild-type or homo- or hetero-C/EBPdKOmice following creation of CKD. Values are expressed as a percentage of basal bodyweight (mean ±

SEM; n = 9 for WT mice; n = 11 for C/EBPd�/�; n = 11 for C/EBPd �/+ mice; *p < 0.05 versus WT CKD).

(B) Survival was calculated as the percentage of mice surviving at 3 weeks after CKD or after sham surgery (n = 20 for WT; n = 25 for C/EBPd�/�; n = 21 for

C/EBPd+/�; *p < 0.05 versus C/EBPd�/� CKD).

(C) Average weights from both legs of red fiber (soleus) or white fiber (EDL) muscles (n = 10 mice/group; *p < 0.05 versus WT CKD).

(D) Representative western blots of p-Stat3 and myostatin from muscles of CKD or sham-operated mice of the following groups: C/EBPd�/�, C/EBPd�/+, or

control (WT).

(E) Cryosections of gastrocnemius muscles from mice that were transfected with lentivirus-expressing Stat3C-GPF or GFP and treated with anti-myostatin

inhibitor or PBS. The sections were immunostained with p-Smad2 and p-Smad3 (red, lower panel). The overlap picture (upper panel) shows GFP-positive

myofibers (green) that expressed p-Smad2 and p-Smad3.

(F) GFP-positive areas in myofibers (Figure 6E) were measured, and the mean myofiber sizes of each group are shown.

(G) The percentage of p-Smad2- and p-Smad3-positive nuclei to total nuclei was calculated. Values are means ± SEM. See also Figure S4.
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Figure 7. Evidence for a p-Stat3, C/EBPd,

and Myostatin Pathway in Muscles of Pa-

tients with CKD

(A) Representative western blots of p-Akt from

muscle biopsies of healthy control or CKD

patients. Bar graph shows the densities of p-Akt

corrected for GAPDH (lower panel; n = 4 CKD

patients and 3 healthy subjects).

(B) Levels of mRNAs of C/EBPd or myostatin were

analyzed by RT-PCR from muscle biopsies of

healthy control or CKD patients (n = 5 control

subjects and 9 CKD patients).

(C) Representative western blots of the indicated

proteins from muscle biopsies from healthy con-

trol or CKD patients.

(D) The band densities in (C) were quantified after

correction for GAPDH (n = 3 pairs for CEBPd; n = 8

pairs for myostatin). Values are means ± SEM. *p <

0.05 versus healthy controls.
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latter is consistent with reports from type 1 diabetic patients

(My�sliwiec et al., 2006; My�sliwiec et al., 2008; Shelbaya et al.,

2012). The potential origin of IL-6 in type 1 diabetes includes

peripheral blood mononuclear cells and/or T helper 17 (Th17)

cells (Bradshaw et al., 2009; Foss-Freitas et al., 2006; Ryba-Sta-

nis1awowska et al., 2013). However, others find that IL-6 does not

stimulate muscle loss in the absence of another illness, such as

cancer (Baltgalvis et al., 2008). Thus, it is unclear how cytokines

cause muscle proteolysis. We propose that the increase in IL-6

stimulated byCKD (Kimmel et al., 1998), and possibly other cyto-

kines, activates p-Stat3, which triggers muscle wasting. Indeed,

whenwedeletedStat3 frommuscle orwhenwe studied the Stat3

inhibitor, C188-9, CKD-induced muscle wasting was inhibited.

How could p-Stat3 stimulate muscle wasting? We have demon-

strated that p-Stat3 upregulates C/EBPd and increases the tran-

scription of myostatin, a potent negative regulator of muscle

mass. Others have implicated C/EBPd in the pathogenesis of

catabolic disorders. For example, based onmicroarray analyses,

there was upregulation of multiple genes, including C/EBPd in

muscles of mice with cancer cachexia or in muscle biopsies of

hemodialysis patients (Bonetto et al., 2011; Gutiérrez et al.,

2008). In addition, there are reports that p-Stat3 stimulates

C/EBPd expression in cancer, immune, or liver cells. This is rele-

vant because theC/EBPdpromoter contains a Stat3 binding site,

making it a likely participant in the pathway (Zhang et al., 2007;

Sanford and DeWille, 2005). Indeed, we found that exposure of

C2C12 myotubes to IL-6 stimulates p-Stat3 and sequentially in-

creases the expression of C/EBPd. Likewise, expression of

constitutively active Stat3 in myotubes increased C/EBPd pro-

moter activity and the expression of C/EBPd protein. Conversely,
376 Cell Metabolism 18, 368–379, September 3, 2013 ª2013 Elsevier Inc.
Stat3 inhibition in C2C12 myotubes or in

CKD mice suppressed the expression of

C/EBPd. A likely target of C/EBPd is myo-

statin. For example, when we knockdown

C/EBPd by siRNA in myotubes, the in-

crease in myostatin stimulated by IL-6

was blocked. In addition, knockout of

C/EBPd in mice with CKD prevented their

loss of muscle mass and expression of
myostatin. These results are consistent with reports that myosta-

tin is expressed in a wide variety of catabolic conditions associ-

ated with muscle wasting, including cancer, CKD, diabetes, or

weightlessness (spaceflight) (Zhou et al., 2010; Zhang et al.,

2011; Feldman et al., 2006; Lalani et al., 2000). In mice with

CKD, the activation of Stat3 leads to expression of myostatin

and its downstream signals, p-Smad2 and p-Smad3, plus accel-

erated protein degradation. Overexpression of Stat3C in muscle

of mice causes a decrease in myofiber sizes; knocking down

myostatin resolves the phenotype of Stat3 activation because

myofiber sizes are increased and p-Smad2 and p-Smad3 levels

are reduced.Our results that Stat3 inducesmyostatin expression

could apply to other members of the TGF-b superfamily, such as

Activin A. Lipopolysaccharides and cytokines, including IL-6 and

IL-1b, induce expression of Activin A (Okuma et al., 2005); high

levels of Activin A have been shown to induce muscle atrophy

(Zhou et al., 2010). Importantly, treatment of mice with cancer-

induced cachexia using a soluble Activin A receptor (actRIIB)

blocked the loss of muscle mass (Zhou et al., 2010). Additional

studies will be necessary to determine if Activin A induction by

cytokines is mediated through Stat3.

The mechanism by which an increase in myostatin leads to

loss of muscle mass could be a decrease in p-Akt in muscle. A

decrease in p-Akt activates caspase-3, leading to cleavage of

the complex structure of muscle proteins and activation of

proteolysis by the 26S proteasome (Du et al., 2004; Wang

et al., 2010). In addition, a low p-Akt level would reduce phos-

phorylation of forkhead transcription factors, which stimulate

the expression of the muscle-specific E3 ubiquitin ligases, Atro-

gin-1/MAFbx or MuRF-1, and accelerate proteolysis in the UPS



Cell Metabolism

p-Stat3 to C/EBPd to Myostatin and Muscle Wasting
(Sandri et al., 2004; Lee et al., 2004; Stitt et al., 2004; Lecker

et al., 2006). In the present experiments, inhibition of p-Stat3

with C188-9 decreased myostatin expression and the activation

of its downstream signaling mediators, p-Smad2 and p-Smad3;

there also was an increase in p-Akt. There was also a sharp

decrease in p-Akt in muscle of CKD patients, with increased

mRNA and protein expressions of C/EBPd and myostatin.

In summary, our results have uncovered a pathway that stim-

ulates muscle wasting in response to activation of Stat3. The

pathway is activated by CKD or acute diabetes and provides

insights into the relationships among the signaling molecules,

Stat3, C/EBPd, and myostatin. Results from our studies of

cultured skeletal muscle cells or mice are consistent with

changes in the levels of the same signaling molecules in muscle

biopsies of CKD patients. Consequently, these results might be

translated into treatment strategies for catabolic conditions like

CKD that cause muscle wasting. Development of a safe and

potent small-molecule Stat3 inhibitor may represent a therapeu-

tic approach to muscle wasting in catabolic conditions.

EXPERIMENTAL PROCEDURES

Mouse Models

All animal experiments and procedures were approved by the Baylor College

of Medicine Institutional Animal Care and Use Committee (IACUC). Subtotal

nephrectomy was used to create CKD in mice (Zhang et al., 2011; May

et al., 1987). To induce diabetes, we injected 12-week-old Stat3flox/flox

and Stat3 KO mice intraperitoneally with 2 doses of 150 mg/kg/d STZ

(Sigma-Aldrich) in 0.1 M citrate buffer (pH 4). Control mice were injected

with the citrate buffer. Mice were housed in individual cages, and the diabetic

Stat3flox/flox mice were pair-fed with diabetic Stat3 KO mice for 9 days.

Muscle Biopsies

During placement of a peritoneal dialysis catheter in CKD patients, the rectus

abdominis muscle was biopsied, frozen at �80�C, and stored until analyzed.

Biopsy of this muscle was obtained from healthy subjects during abdominal

hernia surgeries. The procedures were approved by the Ethical Committee

of the Department of Internal Medicine of the University of Genoa, in accor-

dance with the Helsinki declaration regarding ethics of human research.

mRNA Analyses

mRNAs were analyzed by RT-PCR as described (Takeda et al., 1998). Primers

are listed in Table S2. Relative mRNA levels were calculated from cycle

threshold (Ct) values using glyceraldehyde 3-phosphate dehydrogenase

(GAPDH) as the internal control (relative expression = 2[sample Ct � GAPDH Ct]).

See Table S2 for primer sequences.

Muscle Force Measurement

Mouse grip strength was measured daily for 4 consecutive days using a Grip

Strength Meter (Columbus Instruments). Each day, 5 grip strengths were

assessed at 1 min intervals, and the average grip strength over 4 days was

calculated.

Statistical Analysis

Data were expressed as the mean ± SEM. Differences between two groups

were analyzed by the t test; multiple comparisons were analyzed by ANOVA

with a post hoc analysis by the Student-Newman-Keuls test for multiple com-

parisons. Results were considered statistically significant at p < 0.05.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

four figures, and two tables and can be found with this article online at

http://dx.doi.org/10.1016/j.cmet.2013.07.012.
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